Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 

 

 

Title:  Diabetic nutritionals and method of using

United States Patent:  6,248,375

Inventors:   Gilles; Stephanie M. (Hilliard, OH); Wolf; Bryan W. (Johnstown, OH); Zinker; Bradley A. (Vernon Hills, IL); Garleb; Keith A. (Powell, OH); Walton; Joseph E. (Westerville, OH); Nicholson; Sue E. (Worthington, OH)

Assignee:  Abbott Laboratories (Abbott Park, IL)

Appl. No.:  524445

Filed:  March 14, 2000

Abstract

The present invention is directed to solid matrix nutritionals designed for the person with diabetes. The carbohydrate system of this invention utilizes a source of fructose in combination with at least one nonabsorbent carbohydrate to achieve the same effect of prior art complex multi-component carbohydrate systems. This carbohydrate system has the added benefits of tasting good and can be incorporated into solid matrix nutritionals. The solid matrix nutritionals may also include a source of dietary fiber and a source of indigestible oligosaccharides. The solid matrix nutritionals may be administered to a diabetic in the form of cereal, bread, cookies, muffins, bagels, biscuits, crackers and bars. Particularly, the present invention is directed to a nutritional bar designed for the person with diabetes which incorporates the carbohydrate system. The present invention is also directed to a method of delivering nutrients to a person with diabetes by feeding the solid matrix nutritionals which incorporates the carbohydrate system.

DETAILED DESCRIPTION

As used in this application:

a. "glycemic index" (GI) is calculated by dividing the blood glucose incremental area under the curve (AUC) of the test food by the blood glucose AUC of the reference food and multiplying by 100, where the carbohydrate content of test and reference foods are the same. The reference food is typically glucose or white bread which has the standard GI of 100.

b. the term "total dietary fiber" or "dietary fiber" refers to the sum of the soluble and insoluble fibers. These food components are not broken down by the alimentary enzymes of humans to small molecules which are absorbed into the bloodstream.

c. "soluble" and "insoluble" dietary fiber is determined using American Association of Cereal Chemists (AACC) Method 32-07. A "soluble" dietary fiber source refers to a fiber source in which at least 60% of the dietary fiber is soluble dietary fiber as determined by AACC Method 32-07, and an "insoluble" dietary fiber source refers to a fiber source in which at least 60% of the total dietary fiber is insoluble dietary fiber as determined by AACC Method 32-07.

d. "fermentable" and "non-fermentable" dietary fiber is determined by the procedure described in "Fermentability of Various Fiber Sources by Human Fecal Bacteria In Vitro", at AMERICAN JOURNAL CLINICAL NUTRITION, 1991; 53:1418-1424. This procedure is also described in U.S. Pat. No. 5,085,883 to Garleb et al., the teachings of both of which are incorporated herein by reference. "Non-fermentable" dietary fiber refers to dietary fibers which have a relatively low fermentability of less than 40% by weight, preferably less than 30% by weight, and the term "fermentable" dietary fiber refers to dietary fibers which have a relatively high fermentability of greater than 60% by weight, preferably greater than 70% by weight.

e. the term "indigestible oligosaccharide" refers to a small carbohydrate moiety with a degree of polymerization less than or equal to about 20 and/or a molecular weight less than or equal to about 3,600, that is resistant to endogenous digestion in the human upper digestive tract.

f. the term "nonabsorbent carbohydrates" refers to a carbohydrate moiety with a degree of polymerization greater than about 20 and/or a molecular weight greater than about 3,600, that is resistant to endogenous digestion in the human upper digestive tract. Nonabsorbent carbohydrates possess many of the characteristics of total dietary fiber. However, they are not quantifiable by the MCC Method 32-07 for fiber and consequently they are not included in total dietary fiber values of the instant invention.

g. the term "total calories" refers to the total caloric content of a definitive weight of the finished nutritional product.

h. the term "Reference Daily Intakes or RDI" refers to a set of dietary references based on the Recommended Dietary Allowances for essential vitamins and minerals. The Recommended Dietary Allowances are a set of estimated nutrient allowances established by the National Academy of Sciences, which are updated periodically to reflect current scientific knowledge.

i. the terms "fructose" and "source of fructose" are used interchangeably and refer to the actual fructose content in a carbohydrate source.

j. "sucrose free" refers to sucrose levels less than 0.5 wt/wt % of the solid matrix nutritional.

An aspect of the instant invention are solid matrix nutritionals designed to incorporate a two component carbohydrate system which blunts the glycemic response like the complex multi-component carbohydrate systems of the prior art. The solid matrix nutritionals of this invention are essentially sucrose free and are designed to be used as a meal replacement or nutritional supplement for persons with DM. The solid matrix nutritionals comprise a protein source, a fat source, a carbohydrate source, vitamins, and minerals in amounts sufficient to supplement a diabetic's normal diet. Such amounts are well known by those skilled in the art and can be readily calculated when preparing such products.

Although not intended to limit the invention in any manner, but to merely serve as a general guideline, a solid matrix nutritional of this invention will typically provide the caloric distribution described in Table 2.

                             TABLE 2
            Solid Matrix Nutritional Component Ranges
                       Target        Preferred   More preferred
    Component       (% Calories)    (% Calories)   (% Calories)
    Protein             10-25          10-20          15-20
    Fat                  <30           10-30          20-30
    Carbohydrate        45-90          50-80          50-65


The first component of the solid matrix nutritionals of this invention is a two component carbohydrate system. The two component carbohydrate system of the instant invention comprises a source of fructose and at least one nonabsorbent carbohydrate. Component ranges for the two component carbohydrate system are described in Table 3 on a dry matter basis.

                             TABLE 3
    Carbohydrate System Ranges (wt/wt % of carbohydrate system)
                             Range   Preferred  More Preferred
    Component              (wt/wt %) (wt/wt %)     (wt/wt %)
    fructose                65-100     70-90         70-80
    nonabsorbent carbohydrate   0-35      10-30         20-30


The first component of the two component carbohydrate system of the instant invention is a source of fructose. The fructose source provides sweetness and has a good glycemic index (GI=30). Any fructose source suitable for human consumption may be utilized in the instant invention. Examples of typical fructose sources include high fructose corn syrup, honey and liquid and powder fructose. As indicated in Table 3, the typical amount of fructose in the two component carbohydrate system is from about 65 wt/wt % to about 100 wt/wt % of the two component carbohydrate system, preferably from about 70 wt/wt % to about 90 wt/wt % of the two component carbohydrate system, more preferably from about 70 wt/wt % to about 80 wt/wt % of the two component carbohydrate system.

Fructose is found naturally in fruits and honey. More typically, commercially available fructose is produced by enzymatic conversion of saccharides to fructose. The fructose content of various sources is listed in Table 4.

                             TABLE 4
        Carbohydrate profile of several fructose sources*
                              high fructose corn syrup
    % dry basis       fructose (representative profiles)    honey
    fructose            99.5      42          55          49
    dextrose             0.5      52          41          40
    maltose              0         3           2           9
    higher saccharides    0         3           2           2
    
*Fructose and corn syrup data from Cargill, Minneapolis, Minnesota product
     information sheets, honey values from National Honey Board, San Francisco,
     California

Commercial high fructose corn syrup is available at various levels of fructose. The high fructose corn syrup profiles listed in Table 4 represent two commercially available fructose sources, with fructose at 42% and 55% of the corn syrup, respectively. Any reference in this application to a quantity of fructose should be understood as referring to the actual fructose content within the carbohydrate source. For example, 100 gm of the honey in Table 4 would provide 49 gm of fructose. One skilled in the art can readily calculate how much of a carbohydrate source should be added to the solid matrix nutritional product in order to deliver the desired amount of fructose.

Commercial sources for the fructose are readily available and known to one practicing the art. For example, various high fructose corn syrups are available from Cargil in Minneapolis, Minn. Fructose is available from A. E. Staley in Decatur Illinois and honey is available from De Zaan Inc. in Fort Lee, N.J.

The second component of the two component carbohydrate system is nonabsorbent carbohydrates which comprises less than or equal to about 35 wt/wt % of the two component carbohydrate system, preferably from about 10 wt/wt % to about 30 wt/wt % of the two component carbohydrate system, more preferably from about 20 wt/wt % to about 30 wt/wt % of the two component carbohydrate system.

Examples of nonabsorbent carbohydrate sources of the instant invention typically include chemically modified starches such as Fibersol 2(E) and inulin.

Nonabsorbent carbohydrates possess many of the characteristics of fibers but are not quantified by the AACC method as total dietary fiber. Chemical modification of starch can ultimately affect its rate and extent of digestion in the small intestine. Partial hydrolysis of starch using acid and heat results in molecular rearrangement of the starch molecule such that alpha and beta-(1,2) and -(1,3) linkages are formed in addition to reconfiguration of existing alpha-(1,4) and -(1,6) bonds into beta bonds. For example, corn starch treated with hydrochloric acid, amylase and heat produces a low molecular weight indigestible dextrin (distributed by Matsutani Chemical Industry, Hyogo Japan under the product name Fibersol 2(E)) with a slow rate of fermentation. Therefore, the nonabsorbent carbohydrate is more likely to reach the lower part of the large intestine and be utilized by the indigenous microbiota.

Inulin is usually purified from plants such as chicory, Jerusalem artichoke, leek and asparagus. Various procedures for extracting the inulin have been reported. Usually the steps include chopping up the plant and extraction of the inulin.

Commercial sources of nonabsorbent carbohydrates are readily available and known to one practicing the art. For example, Fibersol 2(E) is available from Matsutani Chemical Industry, Hyogo Japan while inulin is available from Rhone-Poulenc, Inc, Cranbury, N.J.

The second component of the solid matrix nutritional products of this invention is protein. The proteins that may be utilized in the solid matrix nutritional products of the invention include any proteins suitable for human consumption. Such proteins are well known by those skilled in the art and can be readily selected when preparing such products. Examples of suitable proteins that may be utilized typically include casein, whey, milk protein, soy, pea, rice, corn, hydrolyzed protein and mixtures thereof. As indicated in Table 2, the typical amount of protein in the nutritional bar is from about 10% to about 25% of total calories, preferably from about 10% to about 20% of total calories, more preferably from about 15% to about 20% of total calories.

The preferred protein component typically comprises about 100 wt/wt % of the protein component as soy protein.

Commercial sources for the proteins listed above are readily available and known to one practicing the art. For example, caseinates, whey, hydrolyzed caseinates, hydrolyzed whey and milk proteins are available from New Zealand Milk Products of Santa Rosa, Calif. Soy and hydrolyzed soy proteins are available from Protein Technologies International of Saint Louis, Mo. Pea protein is available from Feinkost Ingredients Company of Lodi, Ohio. Rice protein is available from California Natural Products of Lathrop, Calif. Corn protein is available from EnerGenetics Inc. of Keokuk, Iowa.

The third component of the solid matrix nutritional of this invention is the fat. As noted above, the fat source of this invention will typically provide less than about 30% of the total calories, preferably about 10% to about 30% of the total calories, more preferably from about 20% to about 30% of the total calories. The fat source for the present invention may be any fat source or blend of fat sources which provides the desired levels of saturated (less than 10% kcal), polyunsaturated (up to 10% kcal) and monounsaturated fatty acids (10% to 15% kcal). Examples of food grade fats are well known in the art and typically include soy oil, olive oil, marine oil, sunflower oil, high oleic sunflower oil, safflower oil, high oleic safflower oil, fractionated coconut oil (MCToil), cottonseed oil, corn oil, canola oil, palm oil, palm kernel oil and mixtures thereof.

The preferred fat component typically comprises about 66 wt/wt % of the fat as high oleic safflower oil, about 27 wt/wt % of the fat as canola oil and about 7 wt/wt % of the fat as soy lecithin.

Numerous commercial sources for the fats listed above are readily available and known to one practicing the art. For example, soy and canola oils are available from Archer Daniels Midland of Decatur, Ill. Corn, coconut, palm and palm kernel oils are available from Premier Edible Oils Corporation of Portland, Oreg. Fractionated coconut oil (MCT oil) is available from Henkel Corporation of LaGrange, Ill. High oleic safflower and high oleic sunflower oils are available from SVO Specialty Products of Eastlake, Ohio. Marine oil is available from Mochida International of Tokyo, Japan. Olive oil is available from Anglia Oils of North Humberside, United Kingdom. Sunflower and cottonseed oils are available from Cargil of Minneapolis, Minn. Safflower oil is available from California Oils Corporation of Richmond, Calif.

Optional ingredients, dietary fiber and indigestible oligosaccharides, may be incorporated into the solid matrix nutritional. Typically for every gram of dietary fiber and indigestible oligosaccharide added to the formulation, a gram of the two component carbohydrate system is removed. Typically up to about 25% of the two component carbohydrate system may be removed and replaced with dietary fiber and indigestible oligosaccharide.

An optional component of the solid matrix nutritional is dietary fiber which comprises less than or equal to about 30 wt/wt % of the solid matrix nutritional, preferably from about 5 wt/wt % to about 20 wt/wt % of the solid matrix nutritional, more preferably from about 10 wt/wt % to about 20 wt/wt % of the solid matrix nutritional.

Examples of dietary fiber sources of the instant invention typically include gum arabic, carboxymethylcellulose, guar gum, gellan gum, gum acacia, citrus pectin, low and high methoxy pectin, modified cellulose, oat and barley glucans, carrageenan, psyllium, soy polysaccharide, oat hull fiber, pea hull fiber, soy hull fiber, soy cotyledon fiber, sugar beet fiber, cellulose, corn bran and hydrolyzed forms of the listed fibers, encapsulated forms of the listed fibers and any combination thereof.

Numerous types of dietary fibers are known and available to one practicing the art. Fibers differ significantly in their chemical composition and physical structure and therefore their physiological functions. The dietary fiber sources utilized in this invention can be characterized by the terms solubility and fermentability. With regard to solubility, fiber can be divided into soluble and insoluble types and fiber sources differ in the amount of soluble and insoluble fiber they contain.

The preferred dietary fiber component comprises about 62 wt/wt % of the fiber component as soy polysaccharide, about 21 wt/wt % of the fiber component as encapsulated guar gum and about 17 wt/wt % of the fiber component as microcrystalline cellulose.

Representative of soluble dietary fiber sources are gum arabic, sodium carboxymethylcellulose, guar gum, gellan gum, citrus pectin, low and high methoxy pectin, oat and barley glucans, carrageenan and psyllium. Numerous commercial sources of soluble dietary fibers are readily available and known to one practicing the art. For example, gum arabic, hydrolyzed carboxymethylcellulose, guar gum, pectin and the low and high methoxy pectins are available from TIC Gums, Inc. of Belcamp, Maryland. The oat and barley glucans are available from Mountain Lake Specialty Ingredients, Inc. of Omaha, Neb. Psyllium is available from the Meer Corporation of North Bergen, N.J. while the carrageenan is available from FMC Corporation of Philadelphia, Pa.

Many of the soluble dietary fibers are difficult to incorporate into a solid matrix nutritionals due to their affinity to bind moisture which results in a hard food product. Encapsulation of the soluble fiber facilitates their incorporation into a solid matrix nutritional. U.S. Pat. No. 5,545,414 teaches how to encapsulate dietary fiber with zein and is hereby incorporated by reference.

Representative of the insoluble dietary fibers are oat hull fiber, pea hull fiber, soy hull fiber, soy cotyledon fiber, sugar beet fiber, cellulose and corn bran. Numerous sources for the insoluble dietary fibers are readily available and known to one practicing the art. For example, the corn bran is available from Quaker Oats of Chicago, Ill.; oat hull fiber from Canadian Harvest of Cambridge, Minn.; pea hull fiber from Woodstone Foods of Winnipeg, Canada; soy hull fiber and oat hull fiber from The Fibrad Group of LaVale, Md.; soy cotyledon fiber from Protein Technologies International of St. Louis, Mo.; sugar beet fiber from Delta Fiber Foods of Minneapolis, Minn. and cellulose from the James River Corp. of Saddle Brook, N.J.

Dietary fiber can also be divided into fermentable and non-fermentable types. This property of fiber is the capacity to be fermented by the anaerobic bacteria present in the human large bowel. Dietary fibers vary significantly in their fermentability.

Representative of fermentable dietary fiber sources are gum arabic and guar gum. Commercial sources of fermentable dietary fibers are readily available and known to one practicing the art. For example, gum arabic and guar gum are available from TIC Gums, Inc. of Belcamp, Md.

Representative of non-fermentable dietary fiber sources are carboxymethylcellulose (CMC), psyllium, oat hull fiber and corn bran. Numerous commercial sources of non-fermentable dietary fibers are readily available and known to one practicing the art. For example, carboxymethylcellulose is available from TIC Gums, Inc. of Belcamp, Md. The corn bran is available from Quaker Oats of Chicago, Ill. while the oat hull fiber is available from Canadian Harvest of Cambridge, Minn. Psyllium is available from the Meer Corporation of North Bergen, N.J.

A second optional component of the solid matrix nutritional is indigestible oligosaccharides which comprises less than or equal to about 2.5 wt/wt % of the solid matrix nutritional.

Examples of indigestible oligosaccharides sources of the instant invention typically include fructooligosaccharides (FOS), xylooligosaccharides(XOS), alpha glucooligosaccharides(GOS), trans galactosyl oligosaccharides(TOS), soybean oligosaccharides, lactosucrose, hydrolyzed inulin and polydextrose.

An indigestible oligosaccharide, such as fructooligosaccharide(FOS), is rapidly and extensively fermented to short chain fatty acids by anaerobic microorganisms that inhabit the large bowel increasing cell proliferation in the proximal colonic epithelial mucosa. Further, FOS is a preferential energy source for most Bifidobacterium species but it is not utilized by potentially pathogenic organisms such as Clostridium perfingens, C. difficile, or E. coli. Thus, the addition of FOS to the nutritional products of the present invention selects for beneficial bacteria, such as bifidobacteria, but against potential pathogens, such as Clostridium difficile and putrefactive bacteria.

The preferred indigestible oligosaccharide component typically comprises about 100 wt/wt % of the indigestible oligosaccharide as FOS.

Numerous commercial sources of indigestible oligosaccharides are readily available and known to one practicing the art. For example, FOS is available from Golden Technologies Company of Golden, Colo. and XOS is available from Suntory Limited of Osaka, Japan. GOS is available from Solabia, Pantin Cedex, France. TOS is available from Yakult Honsha Co., Tokyo, Japan. Soybean oligosaccharide is available from Calpis Corporation distributed by Ajinomoto U.S.A. Inc., Teaneck, N.J. Hydrolyzed inulin is available from Rhone-Poulenc, Inc, Cranbury, N.J. while polydextrose is available from A. E. Staley in Decatur Ill.

The solid matrix nutritional compositions of the invention desirably contain vitamins and minerals. Vitamins and minerals are understood to be essential in the daily diet. Those skilled in the art appreciate that minimum requirements have been established for certain vitamins and minerals that are known to be necessary for normal physiological function. Practitioners also understand that appropriate additional amounts of vitamin and mineral ingredients need to be provided to nutritional compositions to compensate for some loss during processing and storage of such compositions. Additionally, the practitioner understands that certain micronutrients may have potential benefit for people with diabetes such as chromium, carnitine, taurine and vitamin E and that higher dietary requirements may exist for certain micronutrients such as ascorbic acid due to higher turnover in people with type 2 diabetes.

An example of the vitamin and mineral system for a solid matrix nutritional used as a nutritional supplement typically comprises at least 10% of the RDI, preferably at least 15% of the RDI for the vitamins A, B., B2, B6, B12, C, D, E, K, beta-carotene, biotin, folic acid, pantothenic acid, and niacin; the minerals calcium, magnesium, potassium, sodium, phosphorous, and chloride; the trace minerals iron, zinc, manganese, copper, and iodine; the ultra trace minerals chromium, molybdenum, selenium; and the conditionally essential nutrients such as m-inositol in from about 76 Calories to about 228 Calories.

Artificial sweeteners may also be added to the solid matrix nutritional of the instant invention to enhance the organoleptic quality of the nutritional. Examples of suitable artificial sweeteners typically include saccharine, aspartame, acesulfame K and sucralose. The solid matrix nutritional of the present invention will also desirably include a coating, flavoring and/or color to provide the nutritional products with an appealing appearance and an acceptable taste for oral consumption. For example, the nutritional bars of Examples of the Invention I and II were coated with sugar free white confectionery coating and sugar free dark confectionery coating, respectively. Examples of suitable coatings typically include compounded confectionery coating, milk chocolate coating, glazes, shellac, sugar free compounded confectionery coating, sugar free glazes and sugar free shellac. Examples of useful flavorings for the solid matrix nutritional typically include, for example, chocolate, butter pecan, strawberry, cherry, orange, peanut butter, graham and lemon.

The solid matrix nutritional of the instant invention will also desirably include ingredients which add texture to enhance the mouth feel of the solid matrix nutritional. For example, crisp rice was added at about 6.5 wt/wt % of the nutritional bar in Examples of the Invention I and II. Examples of other suitable ingredients which can add texture typically include nuts, soy nuggets, toasted oats, and fruit pieces.

The solid matrix nutritional compositions may be manufactured using cold extrusion technology as is known in the art. To prepare such compositions, typically all of the powdered components will be dry blended together. Such constituents typically include the proteins, vitamin premixes, certain carbohydrates, etc. The fat soluble components are then blended together and mixed with the powdered premix above. Finally any liquid components are then mixed into the composition, forming a plastic like composition or dough.

The process above is intended to give a plastic mass which can then be shaped, without further physical or chemical changes occurring, by the procedure known as cold forming or extrusion. In this process, the plastic mass is forced at relatively low pressure through a die which confers the desired shape and the resultant exudate is then cut off at an appropriate position to give products of the desired weight.

The mass may, for example, be forced through a die of small cross-section to form a ribbon, which is carried on a belt moving at a predetermined speed under a guillotine type cutter which operates at regular intervals. The cutter, in this case, generally consists of a sharpened blade so adjusted that it cuts through the ribbon but not the underlying belt, but may also consist of a wire. In both cases, the principle is the same; the cutting process occurs at intervals that permit the moving ribbon to be cut into pieces of equivalent weight and dimensions. Generally, this is achieved by timing the cutting strokes and maintaining belt speed at an appropriate level, but there also exist computer controlled versions of this mechanism which offer greater versatility. Alternatively, the mass may be forced through a die of large cross-section and then cut at die level into slices by an oscillating knife or wire, which drop onto a moving belt and are thus transported away. The mass may also be extruded as a sheet, which is then cut with a stamp type cutter into shapes that are appropriate, such as a cookie type cutter. Finally, the mass may also be forced into chambers on a rotary die equipped with an eccentric cam that forces the thus-formed material out of the chamber at a certain point in a rotation of the cylindrical die.

After shaping, the formed product is moved by a transfer belt or other type of material conveyor to an area where it may be further processed or simply packaged. In general, a nutritional bar of the type described would be enrobed (coated) in a material that may be chocolate, a compound chocolate coating, or some other type of coating material. In all such cases, the coating material consists of a fat that is solid at room temperature, but that is liquid at temperature in excess of e.g. 31oC., together with other materials that confer the organoleptic attributes. The coating is thus applied to the bar while molten, by permitting the bar to pass through a falling curtain of liquid coating, at the same time passing over a plate or rollers which permit coating to be applied to the under surface of the bar, and excess coating is blown off by means of air jets. Finally, the enrobed bar passes through a cooling tunnel where refrigerated air currents remove heat and cause the coating to solidify.

In contrast to the cold extrusion manufacturing process of the solid matrix nutritionals above, the solid matrix nutritionals of the instant invention may also be manufactured through a baked application or heated extrusion to produce cereals, cookies, and crackers. One knowledgeable in the arts would be able to select one of the many manufacturing processes available to produce the desired final product.

For example, a dough may be prepared by mixing the dry ingredients with liquid ingredients within a section of the extruder which has temperatures below the cooking or gelatization range of the ingredients. Alternatively, the mixing may be carried out in a batch process or in a continuous dough mixer and then fed into the extruder, depending on the final product desired. Other ingredients such as syrups or sweeteners, flavoring agents, fortification such as fibers, protein, vitamins and minerals, inlays including fruits and nuts, starch modifiers such as emulsifiers and the like may be incorporated into the dough matrix at any appropriate position along the length of the extruder barrel.

The dough then passes into the cooking or heating section of the extruder where it is heated for a time and a temperature and pressure effective to raise the temperature of the dough to temperatures sufficiently high to initiate gelatinization of the starch and denaturation of the protein. The dough is heated within the extruder to temperatures ranging from about 100oC. to about 149oC. These temperatures are necessary to begin the gelatinization and denaturation process. The temperature within the extruder is maintained sufficiently high so that the heat applied when combined with the heat resulting from the frictional energy results in the extrudate emerging from the extruder having a temperature in the range of about 100oC. to about 149oC. and pressure ranging from about 0 psig to about 500 psig.

The heated dough is discharged from the extruder into a hollow attachment. The length of the hollow attachment affects the degree of cooking which is necessary to promote flavor development; complete the gelatinization of the starch; swell the grain fractions, especially bran; enhances color development due to caramelization and maillard reaction; promotes textural enhancement and, control the loss of volatile flavor components. The length of time the dough remains in the hollow attachment is also a factor which affects the finished product characteristics. The length of the hollow attachment and the inlet feed rate of the extruder generally determines the residence time within the hollow attachment, hence, the degree of cook that is achieved. Residence time within the hollow attachment generally ranges from about 3 minutes to about 100 minutes. Typically, the length of the hollow attachment is at least 3 times the longest cross-sectional dimension of the discharge outlet of the extruder. However, the length can range from 3 times the longest cross-sectional dimension of the discharge outlet of the extruder to about 1000 times the longest cross-sectional dimension of the discharge outlet of the extruder.

The temperature and moisture of the dough is maintained as the dough passes through the hollow attachment. The product exiting the attachment generally has temperatures ranging from about 113oC. to about 135oC. and moisture level ranging from about 14% to about 22%.

Depending on the final product desired, an optional die plate containing orifices may be attached at the discharge outlet of the hollow attachment. The presence of a die plate can cause an increase in back pressure within the hollow attachment ranging from about 50 psig to about 2000 psig. The product exiting the die orifice is generally in the form of a rope which is subsequently cut into a desired size for subsequent processing. The shape of the die orifice can also vary depending on the end product desired.

The cooked mass exits the hollow attachment and is cooled to temperatures ranging from 10oC. to 93oC. In the case of a flaked product, the cooked, cooled mass is reduced to a suitable size for flaking. In cases where a die is used, pellets can be cut directly at the die face or a rope can be produced and pellets formed. The moisture content after cooling ranges from about 8% to about 20%.

The cooled mass is then shaped based on the final product desired. Typically, shaping is accomplished by a comminution mill or by other means such as shredding and grating rolls, briquetting means, pellitizers, flaking rolls and the like. The cereal or cracker shaped product can then be toasted or dried to a moisture content ranging from about 2% to about 10% depending on the final product desired.

The heated extrusion process described above may also be used to manufacture a solid matrix nutritional with cookie-like crumb structure. The partially baked dough exits the extruder at about 54oC. The dough is immediately transferred to an auger fed wire-cutting machine and cut into 1 inch diameter pieces while hot. The partially cooked dough pieces are then cooked off a microwave oven for about 70 seconds to produce distinctly leavened cookies which are brown and have a crumb-like structure and crumb-like texture.

The present invention is also directed to a method of delivering nutrients to a person with diabetes by feeding the solid matrix nutritional which incorporates the two component carbohydrate system described above.

Claim 1 of 19 Claims

We claim:

1. A nutritional bar comprising:

a) a source of fat;

b) a carbohydrate system consisting essentially of:

i) a source of fructose from about 65 wt/wt % to about 100 wt/wt % of the carbohydrate system, and

ii) at least one nonabsorbent carbohydrate source wherein said nonabsorbent carbohydrate is less than about 35 wt/wt % of the carbohydrate system; and

c) a source of protein.

 

____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.

 

 

[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]