Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 

 

 

Title:  Treating degenerative disc disease with harvested disc cells and analogues of the extracellular matrix

United States Patent:  6,340,369

Inventors:  Ferree; Bret A. (1238 Cliff Laine Dr., Cincinnati, OH 45208)

Appl. No.:  638726

Filed:  August 14, 2000

Abstract

Living intervertebral disc cells are harvested, cultured and combined with type-specific collagen-glycosaminoglycan extracellular matrix analogues to restore disc function and eliminate pain in patients with disc disease. In the preferred embodiment, the engineered disc tissue is morselized to allow insertion through a small puncture in the annulus fibrosis with a needle and syringe. Additional therapeutic substances such as culture medium, growth factors, differentiation factors, hydrogels polymers, antibiotics, anti-inflammatory medications, or immunosuppressive medications are disclosed as additives to the engineered disc tissue.

SUMMARY OF THE INVENTION

This invention resides in a method of treating a diseased or traumatized intervertebral discs using natural, engineered tissue as opposed to synthetic materials. Broadly, live, intervertebral disc cells are harvested from a patient, cultured, and transplanted while still viable into the affected disc. In the preferred embodiment, the cultured cells are transferred and grown on an analogue of the extracellular matrix to yield an engineered disc tissue. Collagen-glycosaminoglycans preferably provide the extracellular matrix, though existing alternative and yet-to-be-developed analogues may be substituted.

Depending upon the target region of the recipient, the cells preferably differentiate into nucleus pulposus like cells, annulus fibrosis like cells, or both. To assist in differentiation, the nucleus pulposus like cells may be combined with type II collagen-glycosaminoglycans, and the annulus fibrosis like cells may be combined with type I collagen-glycosaminoglycans.

The cells or engineered tissues may be introduced using any surgical technique, including percutaneous or laparoscopic approaches. As one delivery mechanism, a passageway may be formed through the annulus fibrosis, with the cells or engineered disc tissue being introduced into the disc through the passageway. In particular, the engineered disc tissue may be morselized and injected into the disc with a needle and syringe or through a small cannula.

The method of the invention may further include the step of adding one or more therapeutic substances to the cells prior to transplantation. Such therapeutic substances could include culture media, growth factors, differentiation factors, hydrogels, polymers, antibiotics, anti-inflammatory medications, immunosuppressive medications, or any useful combination thereof.

Claim 1 of 35 Claims

I claim:

1. A method of treating a diseased or traumatized intervertebral disc having a nucleus and annulus fibrosis, comprising the steps of:

harvesting live, intervertebral disc cells;

combining the harvested cells with an analogue of the extracellular matrix to produce an engineered disc tissue; and

transplanting the engineered disc tissue into the disc.

____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.

 

 

[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]