Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 

 

 

Title:  Inhibiting MOG-antibody binding

United States Patent:  6,573,236

Issued:  June 3, 2003

Inventors:  Genain; Claude P. (Mill Valley, CA); Hauser; Stephen L. (Ross, CA)

Assignee:  The Regents of the University of California (Oakland, CA)

Appl. No.:  026045

Filed:  December 21, 2001

Abstract

The invention provides methods and compositions for inhibiting pathogenic binding of an pathogenic autoantibody to a myelin oligodendrocyte glycoprotein (MOG) autoantigen and screening for inhibitors of pathogenic binding of an autoantibody to a MOG autoantigen.

DETAILED DESCRIPTION OF THE INVENTION

The invention provides methods and compositions for inhibiting pathology associated with the binding of an autoantibody to a MOG polypeptide, such as occurs in MS. The general methods comprise the step of administering to a host, subject to a pathogenic MOG polypeptide-autoantibody binding, an effective amount of a composition comprising a MOG polypeptide-specific antibody fragment not having a functional Fc portion and sufficient to specifically bind the MOG polypeptide and competitively inhibit the binding of the autoantibody to the MOG polypeptide, whereby the pathology is inhibited. In a particular embodiment, the fragment is selected from the group consisting of Fv, F(ab')2, F(ab), F(ab)2 or fragments thereof.

The compositions include pharmaceutical compositions comprising a MOG polypeptide-specific antibody fragment sufficient to specifically bind a natural MOG polypeptide and competitively inhibit the binding of an autoantibody to the MOG polypeptide, wherein the fragment does not comprise a functional Fc portion, and a pharmaceutically acceptable carrier. The compositions may also comprise a MOG tolerogenic T-cell epitope which induces tolerance and acts synergistically with the antibody fragment to inhibit pathology.

In another embodiment, the invention provides methods and compositions for detecting the presence of an autoantibody bound to a first autoantigen in a tissue. These methods generally comprise the steps of contacting the tissue with a second, labeled autoantigen under conditions wherein the autoantibody binds the second autoantigen to form first autoantigen-autoantibody-second autoantigen labeled complexes, and specifically detecting the labeled complexes. The first and second autoantigens are generally the same or at least include epitopes of the same autoantigen. Preferred autoantigens include, but are not limited to myelin oligodendrocyte glycoprotein (MOG), myelin associated glycoprotein (MAG), myelin/oligodendrocyte basic protein (MOBP), Oligodendrocyte specific protein (Osp), myelin basic protein (MBP), proteolipid apoprotein (PLP), galactose cerebroside (GalC), glycolipids, sphingolipids, phospholipids, gangliosides and other neuronal antigens.

In yet another embodiment, the invention provides methods and compositions for detecting MOG polypeptide-specific B-cells. Such methods generally comprise the steps of fractionating blood to obtain an unselected population of B-cells comprising rare MOG polypeptide-specific B-cells, contacting the population with labeled MOG polypeptides under conditions whereby the labeled MOG polypeptides binds the rare MOG polypeptide-specific B-cells to form labeled complexes of the labeled MOG polypeptides and the rare MOG polypeptide-specific B-cells, and specifically detecting the complexes.

In yet another embodiment, the invention provides methods and compositions for screening for a candidate agent to inhibit pathology associated with MOG polypeptide-specific antibody binding to a MOG polypeptide. These methods generally comprise the steps of:

incubating a mixture comprising: the antibody or a MOG-specific fragment thereof, the MOG polypeptide, and a candidate agent,

under conditions whereby, but for the presence of said agent, the antibody or fragment thereof specifically binds the MOG polypeptide at a reference affinity;

detecting the binding affinity of antibody or fragment thereof to the MOG polypeptide to determine an agent-biased affinity,

wherein a diminution of the agent-biased affinity with respect to the reference affinity indicates that said agent inhibits the binding of the antibody or fragment thereof to the MOG polypeptide and provides a candidate agent for inhibiting pathology associated with MOG polypeptide-specific antibody binding to a MOG polypeptide.

In yet another embodiment, the invention provides polypeptides comprising MOG-specific B- and T-cell epitopes, including polypeptides comprising a fragment having N and C ends and consisting of residues 28-36, 13-21, 67-73, 27-34 or 40-45 of human, rat or marmoset MOG (SEQ ID NO:1, SEQ ID NO:3 and SEQ ID NO:2, respectively), wherein the fragment is directly joined at at least one of the N and C-ends with other than natural human or marmoset MOG flanking residues. Such polypeptides are useful, for example in methods of inhibiting MOG polypeptide-autoantibody binding, such as the general method comprising the step of contacting a mixture of a MOG and an antibody with a polypeptide, whereby the MOG-antibody binding is inhibited.

As used herein, the term "antibody" refers to recombined immune proteins such as T-cell antigen receptors and immunoglobulins, as well as chimeric, humanized or other recombinant antibodies. As used herein, the term "antibody fragment" refers to fragments of antibodies such as Fab, Fab', F(ab)2, F(ab')2 and Fv or any combination thereof. Fv and fragments thereof may be monovalent or divalent. Fv is also known in the art as a minimal antibody fragment. Methods of making antibody fragments, particularly F(ab') are known in the art. (See for example, Harlow and Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York (1988), incorporated herein by reference). For example, F(ab), Fv, etc. can also be produced by recombinant technology.

As used herein, "other than natural human or marmoset MOG flanking residues" refers to anything other than residues naturally flanking the recited peptides in the native proteins. For example, other than natural flanking residues includes no flanking residues or flanking residues different from what naturally flanks the recited peptide.

MOG was originally identified by the mouse monoclonal antibody 8.18.C5, raised against rat cerebellar glycoproteins. It is a quantitatively minor protein representing only 0.01 to 0.05% of the total myelin proteins and has no known function within the CNS. MOG is a member of the immunoglobulin (Ig) superfamily, with an immunoglobulin-like, extracellular domain comprised of 121 amino acids containing one glycosylation site (Asn in position 31) and two highly hydrophobic regions that could represent transmembrane domains, for a total length of 224 amino acids. MOG is widely expressed on oligodendrocyte cell bodies and processes, especially on the outermost layers of the myelin sheaths, and may be more readily accessible to antibody attack than intra-cytoplasmic MBP, or intra and inter-membranous proteolipid apoprotein (PLP). In all species studied including C. jacchus, the non-glycosylated, recombinant extracellular domain of MOG (rMOG) which is highly conserved, suffices for sensitizing animals for EAE. In one aspect of the invention, we have identified minimal T-cell and B-cell epitopes, including residues 28-36, 13-21, 62-74, 27-34 or 40-45; natural human and rat MOG sequences (SEQ ID NO:3 and SEQ ID NO:1, respectively) are known in the art; natural marmoset MOG (SEQ ID NO:2) is identical to the human except for the following substitutions: 9S, 13Q, 19A, 20A, 42S, 60E, 75D, 84K, 91P, 112Q, 137F, 148Y and 151H.

The immune response in autoimmune diseases may possess both cellular and humoral components. Our data indicate that the following sequence of events leads to myelin destruction in CNS autoimmune demyelination:

1) Myelin vacuolation caused by soluble mediators (cytokines, antibodies, free radicals), and/or cellular cytotoxicity. A pattern of intramyelinic edema similar to this has also been observed previously in the CNS of rats intoxicated with tri-ethyl tin sulfate and, interestingly, these changes were reversible.

2) Transformation of vacuolated myelin into networks of small vesicles separated by 2-3 layers of altered myelin with a reduced periodicity (5-6 nm). This dramatic transformation appears to be associated with the deposition of MOG-specific IgG and to reflect antibody-mediated damage, possibly due to complement activation, or antibody-dependent cytotoxicity mediated by macrophages that are invariably associated with vesicular myelin disruption. Conceivably, the initial vacuolar lesion renders the myelin membranes accessible to an attack by autoantibodies.

3) Macrophage activation leading to receptor-mediated phagocytosis of the vesiculated myelin debris. This mechanism has been demonstrated previously in MS and in EAE with IgG serving as a ligand between the myelin debris and Fc receptors in clathrin-coated pits on the macrophage surface. This stage of lesion pathogenesis, although antibody-mediated, may be independent of antibody specificity.

As just outlined above, for example, in MS the inflammatory component is T-cell mediated while the demyelinating component appears to be B-cell mediated. Thus, effective treatments should address both components.

The present invention provides compositions comprising the immunodominant epitopes of MOG. The abolition of the peripheral T-cell response by a tolerization protocol to the extracellular portion of recombinant MOG (aa 1-125) (rMOG; rMOG is comprised of residues 1-125 of the extracellular amino terminus of MOG extended by MRGS at the NH2 and ASES(H)6 at the COOH termini) provided the basis for the present inventive epitope-derived peptide compositions. Mapping of the critical MOG epitopes (including 26-38 and 64-72) was accomplished by cloning T-cells from rMOG-immunized animals and by analyzing T-cell and antibody responses to short peptides of MOG in rMOG immunized marmosets.

Mapping of the antibody response to MOG in C. jacchus indicates limited heterogeneity of epitope recognition by autoantibodies. We have identified regions of MOG that are targeted by demyelinating antibodies using linear peptides. The native, serum polyclonal antibodies in rMOG-immunized marmosets are directed against 4 discrete epitopes along the amino acid sequence, aa 13-21, 28-34, 40-45, 65-74 or shorter sequences, most of which are conserved sequences across species. These peptides differ from those identified to date as antibody epitopes in rodents (aa 35-55), however they bind to antibodies present within the network of vesiculated myelin in acute lesions of human MS as shown in the Examples below. Because most antibodies generally recognize discontinuous epitopes on proteins, our analysis methodology provides detailed knowledge of the structure of MOG is needed to fully define the antigenic repertoire of demyelinating antibodies in C. jacchus and humans. Combinatorial libraries were then made in order to generate F(ab')2 fragments with high affinity for MOG capable of competing with pathogenic IgG and of inhibiting complement-mediated and antibody dependent cellular cytotoxicity. These F(ab')2 fragments were tested alone and in combination with T-cell tolerogenic peptides for their ability to prevent and treat disease in C. jacchus.

A recently identified patient with a progressive spinal cord disorder associated with an IgG monoclonal gammopathy reactive to MOG offered a unique example of the pathophysiologic consequences of an anti-MOG antibody response in a natural experiment. The human monoclonal antibody was adoptively transferred into a C. jacchus with non-demyelinating EAE. Following adoptive transfer the marmoset developed demyelination. Transfer of human IgG in this species is well-tolerated and the blocking ability of F(ab')2 fragments is demonstrated in the adoptive transfer system. The antibody fragments retain their ability to recognize antigenic epitopes yet lack the ability to activate complement or bind macrophages, they coat the autoantigen such that the endogenous autoantibodies are unable to bind a pathological level.

In the preparation of the pharmaceutical compositions of this invention, a variety of vehicles and excipients and routes of administration may be used, as will be apparent to the skilled artisan. Representative formulation technology is taught in, inter alia, Remington: The Science and Practice of Pharmacy, 19th ed., Mack Publishing Co., Easton, Pa., 1995; e.g. Goodman & Gilman's The Pharmacological Basis of Therapeutics, 9th Ed., 1996, McGraw-Hill.

Claim 1 of 11 Claims

What is claimed is:

1. A method of inhibiting myelin oligodendrocyte glycoprotien (MOG)-antibody binding comprising the step of contacting a mixture of a MOG and an antibody with a fragment having N and C ends and consisting of residues 28-36, 13-21, 67-73, 27-34 or 40-45 of human MOG (SEQ ID NO:3), rat MOG (SEQ ID NO:1) or marmoset MOG (SEQ ID NO:2), whereby the MOG-antibody binding is inhibited.
 



____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.

 

 

[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]