Internet for Pharmaceutical and Biotech Communities
| Newsletter | Post Jobs | Advertising |
 
 
 

  

Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 
   



 

Title:  Methods and compositions for treating nephrotic syndrome
United States Patent:  6,977,168
Issued: 
December 20, 2005
Inventors: 
Cheung; Ling Yuk (Hong Kong, HK)
Assignee: 
Ultra Biotech Limited (Douglas, GB)
Appl. No.: 
717133
Filed: 
November 18, 2003

 

Patheon


Abstract

Compositions comprising a plurality of yeast cells, wherein said plurality of yeast cells are characterized by their ability to treat nephrotic syndrome (e.g., lower urinary protein and increase serum protein) in a subject as a result of having been cultured in the presence of an alternating electric field having a specific frequency and a specific field strength. Also included are methods of making and using such compositions.

Description of the Invention

FIELD OF THE INVENTION

The invention relates to yeast compositions that can ameliorate or prevent nephrotic syndrome and are useful as a dietary supplement (e.g., health drink) or medication. These compositions contain yeast cells obtainable by growth in electromagnetic fields with specific frequencies and field strengths.

BACKGROUND OF THE INVENTION

Nephrotic syndrome is a condition caused by a group of diseases that damage the kidney's filtering system, the glomeruli. The two main features of nephrotic syndrome are excess excretion of proteins in the urine (proteinuria) and lower level of protein in the blood (hypoalbuminemia). Other major symptoms include swelling (edema) and high level of cholesterol in the blood (hypercholesterolemia).

Nephrotic syndrome may be caused by both kidney diseases and non-kidney diseases, such as diabetes, lupus and hypertension. Primary causes include minimal change disease, focal segmental glomerulosclerosis, membranous glomerulonephritis, membranoproliferative glomerulonephritis and mesangial proliferative glomerulonephritis.

Nephrotic syndrome is usually diagnosed by clinical testing and confirmed by renal biopsy. An initial urinalysis is done to measure the amount of protein in the urine by collecting urine for 24 hours. A blood test is commonly done to detect the protein, cholesterol and triglyceride levels in the blood. It is common to have abnormal blood overclots (coagulopathies) due to the urinary loss of certain protein in patients with nephrotic syndrome. A blood test may also be used to detect serum levels of factor VIII, fibrinogen and platelets.

Treatment of nephrotic syndrome is directed at the underlying disease. Some of the diseases that cause nephrotic syndrome can be treated with medication. Some do not require treatment and will get better on their own. However, many of the underlying diseases causing nephrotic syndrome have no treatment. There remains a need for an effective treatment for nephrotic syndrome.

SUMMARY OF THE INVENTION

This invention is based on the discovery that certain yeast cells can be activated by electromagnetic fields having specific frequencies and field strengths to produce substances useful in treating nephrotic syndrome. Compositions comprising these activated yeast cells can therefore be used as a medication or dietary supplement, in the form of health drinks or dietary pills (tablets or powder). For instance, these compositions can be used to alleviate nephrotic syndrome (e.g., lower urinary protein and increase serum protein) in animals (including humans), or to prevent or postpone the onset of nephrotic syndrome in a high risk individual (e.g., someone predisposed to nephrotic syndrome because of his health or life style).

This invention embraces a composition comprising a plurality of yeast cells that have been cultured in an alternating electric field having a frequency in the range of about 9500 to 13500 MHz (e.g., 9700-10700 and 11800-12800 MHz) and a field strength in the range of about 250 to 600 mV/cm (e.g., 285-305, 285-315, 320-350, 325-355, 340-370, 360-390, 400-440, 410-450, 430-470, 440-480, 460-500 and 480-520 mV/cm). The yeast cells are cultured for a period of time sufficient to activate said plurality of yeast cells to produce substances useful in treating nephrotic syndrome in a subject. In one embodiment, the frequency and/or the field strength of the alternating electric field can be altered within the aforementioned ranges during said period of time. In other words, the yeast cells are exposed to a series of electromagnetic fields. An exemplary period of time is about 20-150 hours (e.g., 40-130 hours).

Also included in this invention is a composition comprising a plurality of yeast cells that have been cultured under acidic conditions in an alternating electric field having a frequency in the range of about 12000 to 13000 MHz (e.g., 12500-12700 MHz) and a field strength in the range of about 250 to 450 mV/cm (e.g., 360-390 or 285-315 mV/cm). In one embodiment, the yeast cells are exposed to a series of electromagnetic fields. An exemplary period of time is about 20-80 hours (e.g., 30-70 hours).

Included in this invention are also methods of making the above compositions.

Yeast cells that can be included in this composition can be derived from parent strains publically available from the China General Microbiological Culture Collection Center ("CGMCC"), China Committee for Culture Collection of Microorganisms, Institute of Microbiology, Chinese Academy of Sciences, Haidian, P.O. Box 2714, Beijing, 100080, China. Useful yeast species include, but are not limited to, those commonly used in food and pharmaceutical industries, such as Saccharomyces cerevisiae, Saccharomyces carlsbergensis, Saccharomyces rouxii, Saccharomyces sake, Saccharomyces uvarum, Saccharomyces sp., Schizosaccharomyces pombe, or Rhodotorula aurantiaca. For instance, the yeast cells can be of the strain Saccharomyces cerevisiae Hansen AS2.502, IFFI1010 or AS2.53, Saccharomyces sake Yabe ACCC2045, Saccharomyces uvarum Beijer IFFI1072, or Schizosaccharomyces pombe Lindner AS2.248. Other useful yeast strains are illustrated in Table 1.

This invention further embraces a composition comprising a plurality of yeast cells, wherein said plurality of yeast cells have been activated to treat nephrotic syndrome in a subject. Included in this invention are also methods of making these compositions.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Exemplary methods and materials are described below, although methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present invention. All publications and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. The materials, methods, and examples are illustrative only and not intended to be limiting. Throughout this specification and claims, the word "comprise," or variations such as "comprises" or "comprising" will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers. A subject includes a human and veterinary subject.

Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram showing an exemplary apparatus for activating yeast cells using electromagnetic fields. 1: yeast culture; 2: container; 3: power supply.

FIG. 2 is a schematic diagram showing an exemplary apparatus for making yeast compositions of the invention. The apparatus comprises a signal generator and interconnected containers A, B and C.

DETAILED DESCRIPTION OF THE INVENTION

This invention is based on the discovery that certain yeast strains can be activated by electromagnetic fields ("EMF") having specific frequencies and field strengths to become highly efficient in producing substances that alleviate nephrotic syndrome in a subject. Compositions containing these activated yeast cells are therefore useful in the treatment of nephrotic syndrome, e.g., in decreasing urinary protein and/or increasing serum protein levels. Yeast compositions containing activated yeast cells can be used as medication, or as a dietary supplements, in the form of health drinks or dietary pills (tablets or powder).

Since the activated yeast cells contained in the yeast compositions have been cultured to endure acidic conditions (pH 2.5-4.2), these cells can survive the gastric environment and pass on to the intestines. Once in the intestines, the yeast cells are ruptured by various digestive enzymes, and the useful substances for treatment of nephrotic syndrome are released and readily absorbed.

I. Yeast Strains Useful in the Invention

The types of yeasts useful in this invention include, but are not limited to, yeasts of the genera Saccharomyces, Schizosaccharomyces pombe and Rhodotorula.

Exemplary species within the above-listed genera include, but are not limited to, those illustrated in Table 1. Yeast strains useful for this invention can be obtained from laboratory cultures, or from publically accessible culture depositories, such as CGMCC and the American Type Culture Collection, 10801 University Boulevard, Manassas, Va. 20110-2209. Non-limiting examples of useful strains (with accession numbers of CGMCC) are Saccharomyces cerevisiae Hansen AS2.502, IFFI1010 and AS2.53, Saccharomyces sake Yabe ACCC2045, Saccharomyces uvarum Beijer IFF11072 and Schizosaccharomyces pombe Lindner AS2.248. Other useful yeast strains are illustrated in Table 1.

The preparation of the yeast compositions of this invention is not limited to starting with a pure strain of yeast. A yeast composition of the invention may be produced by culturing a mixture of yeast cells of different species or strains. The ability of any activated species or strain of yeasts to treat nephrotic syndrome can be readily tested by methods known in the art.

TABLE 1
 
Exemplary Yeast Strains
 
Saccharomyces cerevisiae Hansen
ACCC2034 ACCC2035 ACCC2036 ACCC2037 ACCC2038
ACCC2039 ACCC2040 ACCC2041 ACCC2042 AS2.1
AS2.4 AS2.11 AS2.14 AS2.16 AS2.56
AS2.69 AS2.70 AS2.93 AS2.98 AS2.101
AS2.109 AS2.110 AS2.112 AS2.139 AS2.173
AS2.174 AS2.182 AS2.196 AS2.242 AS2.336
AS2.346 AS2.369 AS2.374 AS2.375 AS2.379
AS2.380 AS2.382 AS2.390 AS2.393 AS2.395
AS2.396 AS2.397 AS2.398 AS2.399 AS2.400
AS2.406 AS2.408 AS2.409 AS2.413 AS2.414
AS2.415 AS2.416 AS2.422 AS2.423 AS2.430
AS2.431 AS2.432 AS2.451 AS2.452 AS2.453
AS2.458 AS2.460 AS2.463 AS2.467 AS2.486
AS2.501 AS2.502 AS2.503 AS2.504 AS2.516
AS2.535 AS2.536 AS2.558 AS2.560 AS2.561
AS2.562 AS2.576 AS2.593 AS2.594 AS2.614
AS2.620 AS2.628 AS2.631 AS2.666 AS2.982
AS2.1190 AS2.1364 AS2.1396 IFFI1001 IFFI1002
IFFI1005 IFFI1006 IFFI1008 IFFI1009 IFFI1010
IFFI1012 IFFI1021 IFFI1027 IFFI1037 IFFI1042
IFFI1043 IFFI1045 IFFI1048 IFFI1049 IFFI1050
IFFI1052 IFFI1059 IFFI1060 IFFI1062 IFFI1063
IFFI1202 IFFI1203 IFFI1206 IFFI1209 IFFI1210
IFFI1211 IFFI1212 IFFI1213 IFFI1214 IFFI1215
IFFI1220 IFFI1221 IFFI1224 IFFI1247 IFFI1248
IFFI1251 IFFI1270 IFFI1277 IFFI1287 IFFI1289
IFFI1290 IFFI1291 IFFI1292 IFFI1293 IFFI1297
IFFI1300 IFFI1301 IFFI1302 IFFI1307 IFFI1308
IFFI1309 IFFI1310 IFFI1311 IFFI1331 IFFI1335
IFFI1336 IFFI1337 IFFI1338 IFFI1339 IFFI1340
IFFI1345 IFFI1348 IFFI1396 IFFI1397 IFFI1399
IFFI1411 IFFI1413 IFFI1441 IFFI1443
Saccharomyces cerevisiae Hansen Var. ellipsoideus (Hansen) Dekker
ACCC2043 AS2.2 AS2.3 AS2.8 AS2.53
AS2.163 AS2.168 AS2.483 AS2.541 AS2.559
AS2.606 AS2.607 AS2.611 AS2.612
Saccharomyces chevalieri Guilliermond
AS2.131 AS2.213
Saccharomyces delbrueckii
AS2.285
Saccharomyces delbrueckii Lindner ver. mongolicus
(Saito) Lodder et van Rij
AS2.209 AS2.1157
Saccharomyces exiguous Hansen
AS2.349 AS2.1158
Saccharomyces fermentati (Saito) Lodder et van Rij
AS2.286 AS2.343
Saccharomyces logos van laer et Denamur ex Jorgensen
AS2.156 AS2.327 AS2.335
Saccharomyces mellis (Fabian et Quinet) Lodder et kreger van Rij
AS2.195
Saccharomyces mellis Microellipsoides Osterwalder
AS2.699
Saccharomyces oviformis Osteralder
AS2.100
Saccharomyces rosei (Guilliermond) Lodder et Kreger van Rij
AS2.287
Saccharomyces rouxii Boutroux
AS2.178 AS2.180 AS2.370 AS2.371
Saccharomyces sake Yabe
ACCC2045
Candida arborea
AS2.566
Candida lambica (Lindner et Genoud) van. Uden et Buckley
AS2.1182
Candida krusei (Castellani) Berkhout
AS2.1045



 

Candida lipolytica (Harrison) Diddens et Lodder
AS2.1207 AS2.1216 AS2.1220 AS2.1379 AS2.1398
AS2.1399 AS2.1400
Candida parapsilosis (Ashford) Langeron et Talice Var. intermedia
Van Rij et Verona
AS2.491
Candida parapsilosis (Ashford) Langeron et Talice
AS2.590
Candida pulcherrima (Lindner) Windisch
AS2.492
Candida rugousa (Anderson) Diddens et Lodder
AS2.511 AS2.1367 AS2.1369 AS2.1372 AS2.1373
AS2.1377 AS2.1378 AS2.1384
Candida tropicalis (Castellani) Berkhout
ACCC2004 ACCC2005 ACCC2006 AS2.164 AS2.402
AS2.564 AS2.565 AS2.567 AS2.568 AS2.617
AS2.637 AS2.1387 AS2.1397
Candida utilis Henneberg Lodder et Kreger Van Rij
AS2.120 AS2.281 AS2.1180
Crebrothecium ashbyii (Guillermond)
Routein (Eremothecium ashbyii Guilliermond)
AS2.481 AS2.482 AS2.1197
Geotrichum candidum Link
ACCC2016 AS2.361 AS2.498 AS2.616 AS2.1035
AS2.1062 AS2.1080 AS2.1132 AS2.1175 AS2.1183
Hansenula anomala (Hansen)H et P sydow
ACCC2018 AS2.294 AS2.295 AS2.296 AS2.297
AS2.298 AS2.299 AS2.300 AS2.302 AS2.338
AS2.339 AS2.340 AS2.341 AS2.470 AS2.592
AS2.641 AS2.642 AS2.782 AS2.635 AS2.794
Hansenula arabitolgens Fang
AS2.887
Hansenula jadinii (A. et R Sartory Weill et Meyer) Wickerham
ACCC2019
Hansenula saturnus (Klocker) H et P sydow

 

ACCC2020
Hansenula schneggii (Weber) Dekker
AS2.304
Hansenula subpelliculosa Bedford
AS2.740 AS2.760 AS2.761 AS2.770 AS2.783
AS2.790 AS2.798 AS2.866
Kloeckera apiculata (Reess emend. Klocker) Janke
ACCC2022 ACCC2023 AS2.197 AS2.496 AS2.714
ACCC2021 AS2.711
Lipomycess starkeyi Lodder et van Rij
AS2.1390 ACCC2024
Pichia farinosa (Lindner) Hansen
ACCC2025 ACCC2026 AS2.86 AS2.87 AS2.705
AS2.803
Pichia membranaefaciens Hansen
ACCC2027 AS2.89 AS2.661 AS2.1039
Rhodosporidium toruloides Banno
ACCC2028
Rhodotorula glutinis (Fresenius) Harrison
AS2.2029 AS2.280 ACCC2030 AS2.102 AS2.107
AS2.278 AS2.499 AS2.694 AS2.703 AS2.704
AS2.1146
Rhodotorula minuta (Saito) Harrison
AS2.277
Rhodotorula rubar (Demme) Lodder
AS2.21 AS2.22 AS2.103 AS2.105 AS2.108
AS2.140 AS2.166 AS2.167 AS2.272 AS2.279
AS2.282 ACCC2031
Rhodotorula aurantiaca (Saito) Lodder
AS2.102 AS2.107 AS2.278 AS2.499 AS2.694
AS2.703 AS2.1146
Saccharomyces carlsbergensis Hansen
AS2.113 ACCC2032 ACCC2033 AS2.312 AS2.116
AS2.118 AS2.121 AS2.132 AS2.162 AS2.189
AS2.200 AS2.216 AS2.265 AS2.377 AS2.417
AS2.420 AS2.440 AS2.441 AS2.443 AS2.444
AS2.459 AS2.595 AS2.605 AS2.638 AS2.742
AS2.745 AS2.748 AS2.1042
Saccharomyces uvarum Beijer
IFFI1023 IFFI1032 IFFI1036 IFFI1044 IFFI1072
IFFI1205 IFFI1207
Saccharomyces willianus Saccardo
AS2.5 AS2.7 AS2.119 AS2.152 AS2.293
AS2.381 AS2.392 AS2.434 AS2.614 AS2.1189
Saccharomyces sp.
AS2.311
Saccharomycodes ludwigii Hansen
ACCC2044 AS2.243 AS2.508
Saccharomycodes sinenses Yue
AS2.1395
Schizosaccharomyces octosporus Beijerinck
ACCC2046 AS2.1148
Schizosaccharomyces pombe Lindner
ACCC2047 ACCC2048 AS2.214 AS2.248 AS2.249
AS2.255 AS2.257 AS2.259 AS2.260 AS2.274
AS2.994 AS2.1043 AS2.1149 AS2.1178 IFFI1056
Sporobolomyces roseus Kluyver et van Niel
ACCC2049 ACCC2050 AS2.19 AS2.962 AS2.1036
ACCC2051 AS2.261 AS2.262
Torulopsis candida (Saito) Lodder
AS2.270 ACCC2052
Torulopsis famta (Harrison) Lodder et van Rij
ACCC2053 AS2.685
Torulopsis globosa (Olson et Hammer) Lodder et van Rij
ACCC2054 AS2.202
Torulopsis inconspicua Lodder et Kreger van Rij
AS2.75
Trichosporon behrendii Lodder et Kreger van Rij
ACCC2056 AS2.1193
Trichosporon capitatum Diddens et Lodder
ACCC2056 AS2.1385
Trichosporon cutaneum (de Beurm et al.) Ota
ACCC2057 AS2.25 AS2.570 AS2.571 AS2.1374
Wickerhamia fluorescens (Soneda) Soneda
ACCC2058 AS2.1388
 

II. Application of Electromagnetic Fields

An electromagnetic field useful in this invention can be generated and applied by various means well known in the art. For instance, the EMF can be generated by applying an alternating electric field or an oscillating magnetic field.

Alternating electric fields can be applied to cell cultures through electrodes in direct contact with the culture medium, or through electromagnetic induction.  Relatively high electric fields in the medium can be generated using a method in which the electrodes are in contact with the medium. Care must be taken to prevent electrolysis at the electrodes from introducing undesired ions into the culture and to prevent contact resistance, bubbles, or other features of electrolysis from dropping the field level below that intended. Electrodes should be matched to their environment, for example, using Ag—AgCl electrodes in solutions rich in chloride ions, and run at as low a voltage as possible. For general review, see Goodman et al., Effects of EMF on Molecules and Cells, International Review of Cytology, A Survey of Cell Biology, Vol. 158, Academic Press, 1995.

The EMFs useful in this invention can also be generated by applying an oscillating magnetic field. An oscillating magnetic field can be generated by oscillating electric currents going through Helmholtz coils. Such a magnetic field in turn induces an electric field.

The frequencies of EMFs useful in this invention range from about 9500 to 13500 MHz (e.g., 9700-10700 and 11800-12800 MHz). Exemplary frequencies are 10156, 10185, 12107, 12687 and 12698 MHz. The field strength of the electric field useful in this invention ranges from about 250 to 600 mV/cm (e.g., 285-305, 285-315, 320-350, 325-355, 340-370, 360-390, 400-440, 410-450, 430-470, 440-480, 460-500 and 480-520 mV/cm). Exemplary field strengths are 296, 332, 353, 364, 373, 416, 435, 443, 456, 487 and 507 mV/cm.

When a series of EMFs are applied to a yeast culture, the yeast culture can remain in the same container while the same set of EMF generator and emitters is used to change the frequency and/or field strength. The EMFs in the series can each have a different frequency or a different field strength; or a different frequency and a different field strength. Such frequencies and field strengths are preferably within the above-described ranges. Although any practical number of EMFs can be used in a series, it may be preferred that the yeast culture be exposed to, for example, a total of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or more EMFs in a series. In one embodiment, the yeast culture is exposed to a series of EMFs, wherein the frequency of the electric field is alternated in the range of 9700-10700 and 11800-12800 MHz.

Although the yeast cells can be activated after even a few hours of culturing in the presence of an EMF, it may be preferred that the activated yeast cells be allowed to multiply and grow in the presence of the EMF(s) for a total of 20-150 hours (e.g., 40-120 hours).

FIG. 1 (see Original Patent) illustrates an exemplary apparatus for generating alternating electric fields . An electric field of a desired frequency and intensity is generated by an AC source (3) capable of generating an alternating electric field, preferably in a sinusoidal wave form, in the frequency range of 10 to 20,000 MHz. Signal generators capable of generating signals with a narrower frequency range can also be used. If desirable, a signal amplifier can also be used to increase the output. The activation container (2) can be made from non-conductive material, e.g., plastics, glass or ceramic. The wire connecting the activation container (2) and the signal generator (3) is preferably a high frequency coaxial cable with a transmission frequency of at least 30 GHz.

The alternating electric field can be applied to the culture by a variety of means, including placing the yeast culture (1) in close proximity to the signal emitters such as a metal wire or tube capable of transmitting EMFs. The metal wire or tube can be made of red copper, and be placed inside the container (2), reaching as deep as 3-30 cm. For example, if the fluid in the container (2) has a depth of 15-20 cm, 20-30 cm, 30-50 cm, 50-70 cm, 70-100 cm, 100-150 cm or 150-200 cm, the metal wire can be 3-5 cm, 5-7 cm, 7-10 cm, 10-15 cm, 15-20 cm, 20-30 cm and 25-30 cm from the bottom of the container (2), respectively. The number of electrode wires used depends on the volume of the culture as well as the diameter of the wires. The number of metal wires/tubes used can be from 1 to 10 (e.g., 2 to 3). It is recommended, though not mandated, that for a culture having a volume up to 10 L, metal wires/tubes having a diameter of 0.5 to 2.0 mm be used. For a culture having a volume between 10 L and 100 L, metal wires/tubes having a diameter of 3.0 to 5.0 mm can be used. For a culture having a volume in the range of 100-1000 L, metal wires/tubes having a diameter of 6.0 to 15.0 mm can be used. For a culture having a volume greater than 1000 L, metal wires/tubes having a diameter of 20.0 to 25.0 mm can be used.

In one embodiment, the electric field is applied by electrodes submerged in the culture (1). In this embodiment, one of the electrodes can be a metal plate placed on the bottom of the container (2), and the other electrode can comprise a plurality of electrode wires evenly distributed in the culture (1) so as to achieve even distribution of the electric field energy. The number of electrode wires used depends on the volume of the culture as well as the diameter of the wires.

III. Culture Media

Culture media useful in this invention contain sources of nutrients assimilable by yeast cells. Complex carbon-containing substances in a suitable form, such as carbohydrates (e.g., sucrose, glucose, fructose, dextrose, maltose, xylose, cellulose, starches, etc.) and coal, can be the carbon sources for yeast cells. The exact quantity of the carbon sources utilized in the medium can be adjusted in accordance with the other ingredients of the medium. In general, the amount of carbohydrates varies between about 0.1% and 10% by weight of the medium and preferably between about 0.1% and 5% (e.g., about 2%). These carbon sources can be used individually or in combination. Amino acid-containing substances in suitable form (e.g., beef extract and peptone) can also be added individually or in combination. In general, the amount of amino acid containing substances varies between about 0.1% and 0.5% by weight of the medium and preferably between about 0.1% and 0.3% (e.g., about 0.25%). Among the inorganic salts which can be added to the culture medium are the customary salts capable of yielding sodium, potassium, calcium, phosphate, sulfate, carbonate, and like ions. Non-limiting examples of nutrient inorganic salts are (NH4)2HPO4, KH2PO4, K2HPO4, CaCO3, MgSO4, NaCl, and CaSO4.

IV. Electromagnetic Activation of Yeast Cells

To activate or enhance the ability of yeast cells to produce substances beneficial for the treatment of nephrotic syndrome (e.g., decreasing urinary protein and/or increasing serum protein levels), these cells can be activated by being cultured in an appropriate medium under sterile conditions at 20° C.-38° C., preferably at 28-32° C. (e.g., 30° C.) for a sufficient amount of time, e.g., 5-200 hours (e.g., 6-16, 10-20, 27-37 and 31-41 hours), in an alternating electric field or a series of alternating electric fields as described above.

An exemplary culture medium is made by mixing 1000 ml of distilled water with 18 g of mannitol, 40 μg of vitamin B12, 30 μg of vitamin E, 30 μg of vitamin H, 35 ml of fetal bovine serum, 0.20 g of KH2PO4, 0.25 g of MgSO4*7H2O, 0.3 g of NaCl, 0.2 g of CaSO4*2H2O, 4.0 g of CaCO3*5H2O, and 2.5 g of peptone.

An exemplary set-up of the culturing process is depicted in FIG. 1 (see Original Patent). Untreated yeast cells are added to a culture medium at 1×108 cells per 1000 ml of the culture medium. The yeast cells may be Saccharomyces cerevisiae Hansen AS2.502, or may be selected from any of the strains listed in Table 1. An exemplary activation process of the yeast cells involves the following sequence: the yeast cells are grown in the culture medium for 23-33 hours (e.g., 28 hours) at 28-32° C. and then exposed to (1) an alternating electric field having a frequency of 10156 MHz and a field strength in the range of 325-355 mV/cm (e.g., 332 mV/cm) for 6-16 hours (e.g., 11 hours); (2) then to an alternating electric field having a frequency of 10185 MHz and a field strength in the range of 400-440 mV/cm (e.g., 416 mV/cm) for 31-41 hours (e.g., 36 hours); (3) then to an alternating electric field having a frequency of 12107 MHz and a field strength in the range of 430-470 mV/cm (e.g., 443 mV/cm) for 27-37 hours (e.g., 32 hours); (4) then to an alternating electric field having a frequency of 12687 MHz and a field strength in the range of 340-370 mV/cm (e.g., 353 mV/cm) for 31-41 hours (e.g., 36 hours); and (5) finally to an alternating electric field having a frequency of 12698 MHz and a field strength in the range of 285-305 mV/cm (e.g., 296 mV/cm) for 10-20 hours (e.g., 15 hours). The activated yeast cells are then recovered from the culture medium by various methods known in the art, dried (e.g., by lyophilization) and stored at about 4° C. in powder form. The resultant yeast powder preferably contains no less than 1010 cells/g activated yeast.

Subsequently, the activated yeast cells can be evaluated for their ability to treat nephrotic syndrome using standard methods known in the art, such as those described in Section VII.

V. Acclimatization of Yeast Cells To the Gastric Environment

Because the activated yeast cells of this invention must pass through the stomach before reaching the small intestine, where the effective components are released from these yeast cells, it is preferred that these yeasts be cultured under acidic conditions so as to acclimatize the cells to the gastric juice. This acclimatization process results in better viability of the yeast cells in the acidic gastric environment.

To achieve this, the yeast powder containing activated yeast cells can be mixed with a highly acidic acclimatizing culture medium at 10 g (containing more than 1010 activated cells per gram) per 1000 ml. The yeast mixture can then be cultured first in the presence of an alternating electric field having a frequency of 12687 MHz and a field strength in the range of 360-390 mV/cm (e.g., 364 mV/cm) at about 28 to 32° C. for 36-48 hours (e.g., 44 hours). The resultant yeast cells can then be further incubated in the presence of an alternating electric field having a frequency of 12698 MHz and a field strength in the range of 285-315 mV/cm (e.g., 296 mV/cm) at about 28 to 32° C. for 16-28 hours (e.g., 20 hours). The resulting acclimatized yeast cells are then recovered from the culture medium by various methods known in the art and are dried and stored either in powder form (≧1010 cells/g) at room temperature or in vacuum at 0-4° C.

An exemplary acclimatizing culture medium is made by mixing 700 ml fresh pig gastric juice and 300 ml wild Chinese hawthorn extract. The pH of acclimatizing culture medium is adjusted to 2.5 with 0.1 M hydrochloric acid (HCl) and 0.2 M potassium hydrogen phthalate (C6H4(COOK)COOH). The fresh pig gastric juice is prepared as follows. At about 4 months of age, newborn Holland white pigs are sacrificed, and the entire contents of their stomachs are retrieved and mixed with 2000 ml of water under sterile conditions. The mixture is then allowed to stand for 6 hours at 4° C. under sterile conditions to precipitate food debris. The supernatant is collected for use in the acclimatizing culture medium. To prepare the wild Chinese hawthorn extract, 500 g of fresh wild Chinese hawthorn is dried under sterile conditions to reduce water content (≦8%). The dried fruit is then ground (≧20 mesh) and added to 1500 ml of sterilized water. The hawthorn slurry is allowed to stand for 6 hours at 4° C. under sterile conditions. The hawthorn supernatant is collected to be used in the acclimatizing culture medium.
 

Claim 1 of 12 Claims

1. A composition comprising a plurality of yeast cells, wherein said plurality of yeast cells are characterized by their ability to treat nephrotic syndrome in a subject, said ability resulting from their having been cultured in the presence of an alternating electric field having a frequency in the range of 9500 to 13500 MHz and a field strength in the range of 250 to 600 mV/cm, as compared to yeast cells not having been so cultured.

____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.

 

 

     
[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]