Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 

 

 


Title:  Copper lowering treatment of inflammatory and fibrotic diseases

United States Patent:  6,855,340

Issued:  February 15, 2005

Inventors:  Brewer; George J. (Ann Arbor, MI)

Assignee:  Regents of the University of Michigan (Ann Arbor, MI)

Appl. No.:  444204

Filed:  May 23, 2003

Abstract

The present invention relates generally to the field of prophylaxis and therapy for inflammatory and/or fibrotic diseases which include responses to injuries. In particular, the present invention is related to agents that can bind or complex copper such as thiomolybdate, and to the use of these agents in the prevention and treatment of inflammatory and/or fibrotic diseases. Exemplary thiomolybdates include mono-, di-, tri- and tetrathiomolybdate; these agents are administered to patients to prevent and/or treat inflammatory and/or fibrotic diseases, such as pulmonary disease including pulmonary fibrosis and acute respiratory distress syndrome, liver disease including liver cirrhosis and hepatitis C, kidney disease including renal interstitial fibrosis, scleroderma, cystic fibrosis, pancreatic fibrosis, keloid, secondary fibrosis in the gastrointestinal tract, hypertrophic burn scars, myocardial fibrosis, Alzheimer's disease, retinal detachment inflammation and/or fibrosis resulting after surgery, and graft versus host and host versus graft rejections.

DESCRIPTION OF THE INVENTION

The present invention provides methods to prevent and/or treat excessive inflammation that is part of the illness in many diseases, and/or part of the responses to injuries, by administering therapeutically effect amounts of a copper binding or complexing agent such as thiomolybdate, of which tetrathiomolybdate (TM) is an example, to a patient in need thereof. The present invention also provides methods to prevent and/or treat excessive fibrosis that is part of the illness, and/or part of the response to injury, in many diseases by administering therapeutically effect amounts of a copper binding or complexing agent such thiomolybdate, of which tetrathiomolybdate (TM) is an example, to a patient in need thereof.

Over the last several years, a common biochemical pathway has been elucidated for diseases which begin with inflammation, and which, if the patient survives, often lead to a disabling or potentially even lethal fibrosis. A partial list of such diseases or conditions includes but is not limited to liver cirrhosis, renal interstitial fibrosis (often a final common pathway for many types of renal damage), systemic sclerosis (frequently complicated by pulmonary fibrosis), keloid, hypertrophic burn scarring, and excessive fibrosis in various parts of the intestinal tract in some patients after disease or injury. The fibrosis may also be fatal, such as it is in ARDS and hepatitis C. A key player in all of these diseases is transforming growth factor beta (TGF.beta.). The presence, activation, or production of TGF.beta. activates connective tissue growth factor (CTGF), which then stimulates collagen production as well as other molecules of fibrosis. The over-activity of this pathway is a common feature of fibrotic diseases in all organs of the body. The activation of this pathway thus activates a host of inflammatory and fibrosis-inducing cytokines. TGF.beta. may also activate cytokines other than through CTGF. While all of these factors and cytokines are normal substances, and have important physiological functions, it has been discovered that their over-production and dysregulation play a central role in producing the aftermath diseases discussed above.

Treatment methods of the present invention lower endogenous copper levels and abrogate and treat diseases which begin with inflammation and which, upon patient survival, often lead to disabling or even lethal fibrosis. In some embodiments, such therapy involves administering a copper binding or complexing thiomolybdate, of which tetrathiomolybdate is an example. In the following description, it is understood that tetrathiomolybdate is simply an embodiment of the use of a copper binding or complexing thiomolybdates. While an understanding of the mechanism is not necessary to practice the present invention and the present invention is not limited to any particular mechanism, it is contemplated that reduction of endogenous copper levels alters the regulation of CTFG, TGF.beta., SPARC and/or heparin. The contemplated altered regulation of these molecules is based upon observations that CTGF is a cysteine-rich protein and that cysteine-rich proteins are often involved in copper binding and copper dependence, that TGF.beta. can be stimulated or activated by secreted protein acidic and rich in cysteine (SPARC), a known copper dependent cytokine, and that TGF.beta. itself is dependent upon interaction with heparin molecules, many of which are known to bind copper and require copper for activity.

Tetrathiomolybdate (TM) is a unique anticopper drug which forms a stable tripartite complex with protein and copper. In the gut, if given with food, it prevents the absorption of copper from food and from endogenous secretions (saliva, gastric juice, etc). If given away from food, it is partially absorbed and inactivates copper in the blood by forming a three way complex with serum albumin. Since the free copper of the blood is in equilibrium with free copper in organs, it is possible to quickly titrate the body's free copper. TM is the most potent and rapidly acting anticopper drug available.

TM was developed for treating an inherited disease of copper toxicity, Wilson's disease, as described subsequently. The development of the treatment of Wilson's disease with TM has demonstrated that TM is safe and effective, and that it is particularly useful in the acutely ill, copper-toxic patient. The preparation of an NDA for the treatment of Wilson's disease with TM is underway.

The ability of copper reducing agents to be effective at abrogating and treating diseases and/or responses to injuries which begin with inflammation and which may lead to disabling fibrosis (or inflammatory and/or fibrotic diseases), was initially evaluated during the development of the present invention by studying the effects of TM treatment on pulmonary disease and liver disease in good animal models which exist for both diseases, as described further below.

The profibrotic pathway involving TGF.beta. and CTGF is central to pathological fibrosis in many organs besides the lungs (W A Border and N A Noble, N. Engl. J. Med., 331(19):1286-1292 [1994]; and D R Brigstock, Endocr. Rev., 20(2):189-206 [1999]), as is described further below. The effectiveness of TM in treating pulmonary fibrosis, as described below, shows that TM therapy finds use in treating these other and similar diseases of excessive fibrosis and/or inflammation. Other diseases amenable to TM therapy include but are not limited to renal fibrosis and Alzheimer's disease, as described further below. It is therefore contemplated that in other embodiments of the present invention, the administration of therapeutically effective amounts of TM to patients susceptible to pathological fibrosis in other organs prevents and/or treats these diseases.

Other approaches to treatment of inflammatory and fibrotic diseases include other copper-lowering drugs, antibodies or antisense molecules to key cytokines, such as to TGF.beta. or to CTGF, and other drugs which shut down the system. However, certain of these approaches may work better than others. Other copper lowering drugs include penicillamine, trientine, and zinc. Both penicillamine and trientine are relatively toxic, and trientine is also relatively slow acting; moreover, zinc is also slow acting. Other potential drugs include antibodies or antisense molecules to key cytokines, such as to TGF.beta. or to CTGF. For example, it is known that antibody to TGF.beta. is effective in treating the bleomycin mouse model. However, antibodies and antisense molecules are difficult to deliver and sustain at therapeutically effective levels in clinical situations. Other potential drugs shut down the TGF.beta. system. For example, a drug called perfenidone is effective in the bleomycin mouse model, and may affect the transcription of TGF.beta.. However, at present, perfenidone does not appear to be in clinical use, and little is known about it.

In contrast to these other approaches, the therapeutic use of TM has been demonstrated to be safe and effective, as described further below, and studies conducted during the development of the present invention have demonstrated that therapeutically lowering endogenous copper with TM will beneficially affect a series of diseases dependent upon the TGF.beta. pathway. Therefore, the present invention provides methods of treating inflammatory and/or fibrotic diseases and/or responses to injuries by therapeutically lowering endogenous copper levels in a patient in need thereof. Preferably, such conditions are dependent upon the TGF.beta. pathway. In some embodiments, the therapy comprises administering therapeutically effective amounts of a copper binding or complexing agent for a therapeutically effective time. Exemplary agents include but are not limited to thiomolybdates, of which tetra-, tri-, di-, and monothiomolybdates are non-limiting examples.

I. Pulmonary Diseases

For examining pulmonary disease, the bleomycin mouse model was used. Pulmonary fibrosis, idiopathic or otherwise, is commonly progressive and essentially untreatable with a fatal outcome (R K Coker and G J Laurent, Thorax., 52(3):294-296 [1997]; and K Zhang and S H Phan, Biol. Signals., 5:232-239 [1996]). It is clear from a rather wide body of work that the underlying mechanism involves dysregulation and overproduction of certain cytokines (R K Coker and G J Laurent, Thorax., 52(3):294-296 [1997]; K Zhang and S H Phan, Biol. Signals., 5:232-239 [1996]; S H Phan, Thorax., 50(4):415-421 [1995]; R E Smith et al., J. Leukoc. Biol., 57(5):782-787 [1995]; and C M Hogaboam et al., Proc. Assoc. Am. Physicians, 110(4):313-320 [1998]). A central mechanism is hypothesized to involve continued overproduction of transforming growth factor beta (TGF.beta.), which in turn increases the production and/or activity of connective tissue growth factor (CTGF) (N Khalil and A H Greenberg, Ciba Found. Symp. 157:194-211 [1991]; W A Border and N A Noble, N. Engl. J. Med., 331(19):1286-1292 [1994]; M Denis, Immunology, 82(4):584-590 [1994]; J A Lasky et al., The American Physiological Society, L365-L371 [1998]; D R Brigstock, Endocr. Rev., 20(2):189-206 [1999]; J T Allen et al., Cell Mol. Biol., 21:693-700 [1999]; and J F Pittet et al., J. Clin. Invest., 107:537-1544 [2001]).

Bleomycin when given to cancer patients produces pulmonary fibrosis in about 3% of the patients (M Ishizuka et al., J. Antibiot. (Tokyo), 20:15 [1967]). Based upon these observations, a mouse model of pulmonary fibrosis has been developed, in which intratracheal instillation of bleomycin uniformly produces pulmonary fibrosis (R E Smith, J. Leukoc. Biol., 57(5):782-787 [1995]; N Khalil and A H Greenberg, Ciba Found. Symp., 157:194-211 [1991]; J A Lasky, The American Physiological Society, L365-L371 [1998]; DR Brigstock, Endocr. Rev., 20(2):189-206 [1999]; J T Allen et al., Am. J. Respir. Cell Mol. Biol., 21:693-700 [1999]; S H Phan and S L Kunkel, Exp. Lung. Res., 18:29-43 [1992]; and J. Clin. Invest. 107:537-1544). Thus, the mice develop a severe lung inflammation followed by fibrosis in 2-3 weeks, at which time they are sacrificed. Fibrosis is quantified in lung tissue by measuring hydroxyproline, a key component of the collagen that is deposited in fibrotic lung. The mouse bleomycin model is believed to be a good model for human pulmonary fibrosis. The hypothesis that TGF.beta. is central to pulmonary fibrosis has been validated by studies showing that inhibition of TGF.beta. by pharmacological means or by antibodies greatly reduces the pulmonary fibrosis produced by bleomycin or other methods of lung injury in the mouse (M Denis, Immunology, 82(4):584-590 [1994]; and J F Pittet et al., J. Clin. Invest., 107:537-1544 [2001]).

Using the bleomycin mouse model to examine the effects of TM treatment in developing the present invention, it was observed that copper-lowering therapy with TM can dramatically prevent most of the lung damage and fibrosis from tracheal bleomycin instillation in mice (as described in Example 1 and as shown in Table 1). Moreover; there is a strong dose-response relationship between the amount of TM administered and the degree of pulmonary protection (as shown in Table 3 and FIG. 2). TM therapy also protects against bleomycin induced weight loss (as shown in FIG. 1). TM treatment can be initiated, for example, up to at least seven days after the bleomycin instillation, and still offer significant protection against pulmonary damage (as shown in FIG. 3). These results indicated that TM treatment completely abrogated fibrosis and markedly attenuated inflammation in an animal model that is directly relevant to ARDS and pulmonary fibrosis in humans.

Although it is not necessary to understand the mechanism in order to practice the invention, and it is not intended that the invention be limited to any particular mechanism, it is hypothesized that the mechanism of the protection effected by TM therapy is due to the inhibition of one or more steps in the profibrotic pathway which involves activation of TGF.beta., which in turn activates CTGF, which then activates the formation of collagen and other profibrotic molecules, as described above.

It is also possible that the mechanism of this effect involves primarily suppression of inflammation, as for example by inhibiting proinflammatory cytokines. If the inflammatory reaction to bleomycin is mitigated by TM therapy, the signaling to the fibrotic pathway might be lessened, resulting in less fibrosis. However, the observation that TM therapy initiated significantly after bleomycin instillation (as, for example, at day 7) still has a significant effect in inhibiting fibrosis (as described in Example 1 and shown in FIG. 3) suggests that suppression of inflammation is not the sole effect of TM. That is because TM therapy initiated on day 7 would not reduce copper levels at the therapeutic area until about day 11, by which time all or most of the inflammation and inflammatory stimuli would have subsided. The positive results observed when the drug treatment is initiated significantly after bleomycin instillation thus suggests that TM can act by direct inhibition of the fibrotic pathway. Of course, TM therapy might result in inhibition of both inflammation and fibrosis.

Irrespective of the pathway involved, or of the underlying molecular mechanism, the fact that TM therapy can so markedly inhibit fibrosis in this model confirms the use of this approach to preventing and treating pulmonary fibrosis in human patients. The experimental results indicate that TM therapy is effective after injury (as, for example, as is shown in FIG. 3), which supports its efficacy in clinical use. The use of TM has previously been proven to be remarkably safe, as demonstrated by its considerable experimental use in humans for treatment of Wilson's disease (G J Brewer et al., Arch. Neur., 53:1017-1025 [1996]; and G J Brewer, PSEBM, 223(1):39-49 [2000]) and for treatment of cancer (G J Brewer et al., Clin. Cancer., 6:1-10 [2000]; and G J Brewer, Soc. for Exp. Biol. and Med., 226:665-673 [2001]). The only side effect of lowering copper levels by TM therapy in cancer has been over-treatment, which leads to an easily reversible bone marrow depression. The use of serum ceruloplasmin as a surrogate to monitor copper status has proven to be effective, reliable, and easy to use (G J Brewer et al., Clin. Cancer, 6:1-10 [2000]).

Based upon these results, clinical use of TM therapy for ARDS and/or pulmonary fibrosis in human patients is contemplated. It is therefore contemplated that in other embodiments of the present invention, the administration of therapeutically effective amounts of TM to patients susceptible to pulmonary fibrosis prevents and/or treats this disease.

II. Liver Disease

For examining liver disease, studies of the mouse model of liver damage (hepatitis) followed by cirrhosis were undertaken. Two of four appropriate mouse models were involved. In one model, concanavilin A (ConA) treatment was utilized to produce cirrhosis. The Con A was injected intravenously once weekly into mice, and produced a hepatitis, which is manifested by an increasing level of transaminase enzymes in the blood. TM therapy almost completely inhibits this increase, indicating suppression of inflammation (as is described in Example 7 and as is shown in FIG. 4). The results indicated that TM treatment completely abrogated fibrosis and markedly attenuated inflammation in a model that is directly relevant to hepatitis in humans. It is therefore contemplated that in other embodiments of the present invention, the administration to patients in need thereof of therapeutically effective amounts of TM after liver damage due to hepatitis prevents or decreases subsequent cirrhosis.

III. Kidney Disease

After kidney injury of almost any type, a diffuse interstitial fibrosis (believed to be due to over-activity of the TGF.beta. pathway) produces kidney failure. It is therefore contemplated that in other embodiments of the present invention, the administration to patients in need thereof of therapeutically effective amounts of TM after kidney injury prevents or decreases fibrosis, thereby preventing or abrogating kidney failure subsequent to kidney damage.

IV. Alzheimer's Disease

TGF.beta. has been implicated in Alzheimer's plaque formation. Moreover, copper has been implicated in the precipitation of the amyloid into the plaques in the course of the disease. It is therefore contemplated that in further embodiments of the present invention, the administration to patients in need thereof of TM results in lowering copper levels, thus preventing any further precipitation; this results in arresting the Alzheimer's disease, and in some cases allows some recovery from the disease.

According to R S Turner (Neurologic aspects of Alzheimer's disease, In: Interdisciplinary handbook of dementia: psychological, neurologic, and psychiatric perspectives. John Wiley & Sons. Lichtenberg P A, Murman D L. and Mellow A M), Alzheimer's disease (AD) currently affects about 2-3% of individuals at age 65, and the incidence approximately doubles for every 5 years of age afterward. The prevalence of AD approaches 50% of those over age 85 (as reported by D A Evans et al., JAMA, 262:2551-2556 [1989]). AD is not inevitable with aging, however, and "escapees" warrant further epidemiologic and genetic study. In 1990, there were an estimated 4 million people in the U.S. with AD. Because of an expanding population and increasing life expectancy, the number of affected individuals is projected to increase to 14 million in the U.S. in 2050. Women make up a larger proportion of patients who live and die with AD due to a higher relative risk and longer life expectancy than men. In 2001, the annual costs for care of a patient with AD were approximately $28,000 for formal care and $11,000-$35,000 for informal care (D P Rice et al., Am. J. Manag. Care, 7:809-818 [2001]). The high prevalence of AD results in an enormous economic impact. As the elderly population also increases in less affluent countries, large numbers of patients with AD will emerge and face intense competition from the younger populace for scarce health care resources. The slow progression of disease (with an average of 7 years, and a range of 2-18 years) engenders many years of health care costs. As dementia becomes severe and patients become progressively more dependent on caregivers for basic activities of daily living, expenditures increase. A major cost for many patients in the latter stages of AD is assisted living and nursing home care.

Genetically, AD is a multifactorial disease, with the possible involvement of several genetic components (E K Luedecking et al., Hum. Genet., 106:565-569 [2000]). Three causative genes at chromosomes 21, 14, and 1 have been identified in the early-onset form of AD. These three genes, amyloid precursor protein (APP), presenilin-1 (PS1), and presenilin-2 (PS2), account for most of the cases of autosomal dominant familial AD (C L Lendon et al., JAMA, 277:825-831 [1997]). Familial AD, however, accounts for <1% of all AD cases. Additionally, the apolipoprotein E4 allele is a risk factor for late-onset AD (W J Strittmatter et al., Proc. Natl. Acad. Sci. USA, 90:1977-1981 [1993]). However, mutations in these genes do not explain the occurrence of disease in all patients (E K Luedecking et al., Hum. Genet. 106:565-569 [2000]).

Biochemically, AD is characterized by the deposition of beta amyloid protein (A.beta.) within the neocortex, associated with neuronal demise and oxidative stress (A I Bush, Bio-inorganic Chemistry, 184-191 [2000]). The deposition of A.beta. is considered to be closely related to the primary pathogenesis of AD. For example, familial AD-linked mutations of APP, PS 1, and PS2, increase both cerebral A.beta. burden and A.beta.1-42 production, underscoring the role that A.beta. metabolism plays in AD pathogenesis (C S Atwood et al., Met. Ions Biol. Syst., 36:309-364 [1999]). Moreover, the deposition of A.beta. in the neocortex of transgenic mice overexpressing A.beta. is accompanied by many of the other neuropathological features of AD, including intraneuronal tau abnormalities and neuronal loss (M E Calhoun et al., Nature, 395:755-756 [1998]), as well as signs of oxidative damage similar to those seen in AD-affected brain (M A Smith et al., J. Neurochem., 70:2212-2215 [1998]). The length of the A.beta. species is considered to be one important factor in AD pathogenesis as A.beta.1-42, a minor free soluble species in biological fluids, is enriched in amyloid deposits. Many studies have now confirmed that A.beta. is neurotoxic in cell culture. Hence, there is a compelling argument to consider A.beta. deposition as a therapeutic target in AD (A I Bush, Metals and neuroscience. Bio-inorganic chemistry, 184-191 [2000]).

For examining the effects of TM on Alzheimer's disease, the transgenic mouse model Tg2576 is used. Transgenic (tg) mouse models have proven to be useful tools in testing hypotheses of AD pathogenesis as well as testing novel therapeutic strategies (Turner R S. Commentary). Tg human amyloid precursor protein (hAPP) mice recapitulate some but not all features of human AD, and may therefore be best described as developing a partial AD-like phenotype with aging. However, the distribution of amyloid pathology in tg hAPP mouse brain is remarkably similar to the human disease. One of the more widely studied HAPP tg mouse lines--Tg2576 mice developed by Hsiao et al. (K Hsiao, Exp. Gerontol., 33:883-889 [1998]; and K Hsiao et al., Science, 274:99-102 [1996])--expresses the familial AD gene hAPP swe (Swedish mutation; APPK670N/M671L in the APP770 numbering system) in a C57B6/SJL genetic background. The neuron-specific prion protein promoter drives expression of the transgene. With aging, Tg2576 mice exhibit a phenotype that includes learning and memory deficits, an abnormal pattern of glucose metabolism in brain, and pathologic changes including amyloid plaque deposition, elevated A.beta.40 and A.beta.42 levels, neuritic changes, phosphorylated tau epitopes, .alpha.-synuclein positive dystrophic neurites, gliosis, and inflammatory responses; however, aging mice develop neither neurofibrillary tangles nor significant neuronal loss (R S Turner, Commentary; K Hsiao, Exp. Gerontol., 33:883-889 [1998]; and K Hsiao et al., Science, 274:99-102 [1996]). Cholinergic abnormalities in the immediate vicinity of amyloid plaques are apparent in immunostained brain sections from older hAPP tg (C Sturchler-Pierrat et al., Proc. Natl. Acad. Sci. USA, 94:13287-13292 [1997]) and hPresenilin-1 (mutant)/hAPP double tg mice (T P Wong et al., J. Neurosci., 19:2706-2716 [1999]).

Amyloid plaque deposition in aging hAPP tg mice may be modulated pharmacologically, immunologically, environmentally, and genetically. For example, amyloid pathology is accelerated in hPresenilin-1 (mutant)/hAPP double tg mice (L Holcomb et al, Nat. Med., 4:97-100 [1998]), and absent in murine ApoE null (-/-)/hAPP tg mice (K R Bales et al., Nature Genet., 17:263-264 [1997]). In the latter mice, hApoE4 transgene expression promotes more fibrillar amyloid deposition than hApoE3 (D M Holtzman et al., Proc. Natl. Acad. Sci. USA, 97:2892-2897 [2000]). Human transforming growth factor .beta.1/hAPP double tg mice develop increased A.beta. deposition within plaques, with a greater proportion of meningeal and vascular deposition, reflecting a role of inflammation in amyloidogenesis (T Wyss-Coray et al., Nature, 389:603-606 [1997]). Amyloid pathology in hAPP tg mice may be prevented by pharmacologic treatment with the phosphatidylinositol kinase inhibitor wortmannin that inhibits A.beta. production in vitro (S J Haugabook et al., FASEB Journal, published online Nov. 9, 2000), by the Cu++ /Zn++ -chelator/antibiotic clioquinol that blocks amyloid fibril formation in vitro (L Helmuth, Science, 1273-274 [2000] editorial), or by the nonsteroidal anti-inflammatory drug ibuprofen (G P Lim et al., J. Neurosci., 20:5709-5714 [2000]). The efficacy of this wide variety of pharmacologic treatments in preventing amyloid deposition in tg AD mice reveals multiple alternative and competing therapeutic strategies. Novel therapeutics targeting the recently-identified .gamma.-secretase complex and .beta.-secretases that generate A.beta.40 and A.beta.42 from APP and immune-based strategies are also under experimental investigation (D J Selkoe, Nature, 399 suppl:A23-31 [1999]). It is contemplated that administration of a copper binding or complexing agent such as thiomolybdate to Tg2576 mice results in a reduction of A.beta.40 and A.beta.42 levels in brain homogenates.

V. Cancer and Angiogenic Diseases

Research indicates that angiogenesis is required for cancer growth, and since adults have little requirement for angiogenesis, the present invention contemplates that antiangiogenic therapies might provide successful cancer treatments.

Copper has been shown to be a stimulus of angiogenesis in a rabbit cornea model in which copper sulfate, or a copper containing molecule, ceruloplasmin, were both angiogenic (A Parke et al., Am. J. Clin. Path., 137:1121-1142 [1988]; K S Raju et al., J. Natl. Cancer Inst., 69:1183-1188 [1982]). When rabbits were made partially copper deficient with penicillamine and a low copper diet, an angiogenic molecule, PGE1, placed in the cornea, showed markedly reduced angiogenesis. Brem and colleagues implanted brain tumors in the brains of copper deficient rabbits and rats, and showed markedly reduced growth and invasive properties of the tumors in the copper deficient animals compared to controls (S S Brem et al., Am. J. Path., 137:1121-1147 [1990]; S S Brem et al., Neurosurgery, 26:391-396 [1990]). Some embodiments of the present invention provide TM compositions that are more potent and much safer anticopper drugs then penicillamine and trientine and which are contemplated for use in treating cancer. Indeed, in five different rodent cancer models, TM has shown dramatic effects on inhibition of tumor growth, including; the HER2/neu transgenic mammary model (Q Pan et al., Cancer Res., 62:4854-4859 [2002]); a head and neck model (C Cox et al., Laryngoscope, 111:696-701 [2001]); a prostate model (K van Golen et al., Neoplasia, 4(5):373-379 [2002]); a lung model (M Khan et al., Neoplasia, 4(2):1-7 [2002]); and an inflammatory breast model (Q Pan Q et al.). TM has also shown positive effects in spontaneous canine cancers. A clinical phase 1/2 study of a variety of metastatic and advanced cancers has shown positive results, with an average of 11 months freedom from progression in evaluable patients, and long term stabilization in three patients (G J Brewer et al., Clin. Cancer Res., 6:1-10 [2000]). A number of phase 2 studies of specific cancers are under way.

While not being limited to any mechanism, the present invention contemplates that the antiangiogenic mechanism of TM appears to involve the copper dependence of a large number of angiogenic promoters (G J Brewer, EBM, 226:665-673 [2001]). In addition, lowering copper levels to a midrange inhibits nuclear factor kappa B (NF.kappa.b), a type of master switch for cytokine transcription. These mechanisms may make copper lowering therapy a more global inhibitor of angiogenesis than other approaches. In some embodiments, copper is maintained in the midrange by using ceruloplasmin (Cp) levels as a surrogate marker of copper status.

The present invention also contemplates the antiangiogenic therapeutic effects of TM in diseases of neovascularization besides cancer (e.g., animal models of retinopathy). In retinopathy of prematurity, newborn mice exposed to hyperoxia for five days develop a marked retinopathy after four days exposure to room air, with a peak of a major angiogenic stimulus, vascular endothelial growth factor (VEGF), at 24 hours. TM treatment has shown strong inhibition of the VEGF peak and a dramatic reduction in retinal neovascularization.

The invention's success with the antiangiogenic use of TM through its inhibition of angiogenic cytokines led to investigation of key cytokines of fibrosis and inflammation, which become dysregulated in a series of diseases of fibrosis and inflammation, that may be similarly copper dependent, and treatable with TM.

VI. Primary Biliary Cirrhosis

The specific cause of primary biliary cirrhosis (PBC) remains unknown, although it is though to be an autoimmune disorder (R T Chung and D K Podolsky, Cirrhosis and its complications: Primary biliary cirrhosis. In: Harrison's Principles of Internal Medicine 15th edition, E Braunwald et al., (Eds). McGraw-Hill Companies, Inc, New York, pp. 1757-1758 [2001]). A circulating IgG antimitochondrial antibody (AMA) is found in more than 90% of patients, and only rarely in other diseases. PBC is often associated with other autoimmune disorders such as autoimmune thyroiditis, type I diabetes mellitus, and other autoimmune syndromes.

The disease is divided into four stages. Stage I is a necrotizing inflammatory process of the portal triads, with destruction of smaller bile ducts, a heavy infiltrate of inflammatory cells, mild fibrosis, and part of the time, cholestasis. In stage II, the inflammatory reaction decreases, the number of bile ducts is reduced, and small bile ductules proliferate. In stage III, which results from progression over months to years, there is a decrease in interlobular ducts, loss of liver cells, and increase in periportal fibrosis leading to a fibrotic network. Stage IV is micronodular or macronodular cirrhosis.

Clinically the disease may begin with symptoms of itching or fatigue. Often it is picked up by an elevated serum alkaline phosphatase on routine screening. Ninety percent of PBC patients are women. Over a period of months to years the disease may progress and produce jaundice. Eventually signs of hepatic failure and of portal hypertension appear. Progression is somewhat variable, with some patients dying or requiring transplant in 5 years, while others have a more protracted course.

A presumptive diagnosis may be made on the basis of an elevated alkaline phosphatase usually in a woman, with or without jaundice, and a positive AMA test. However, since false positives do occur, diagnosis should always be confirmed by a liver biopsy showing typical findings of PBC.

Treatment with the bile acid ursodeoxycholic acid (ursodiol) is useful for symptomatic and sometimes biochemical improvement, but has not been shown to alter the progressive course of the disease. No other treatment, aside from liver transplantation, has been shown to be effective.

Neuman et al. (M Neuman et al., J. Gastro. and Hepat., 17:196-202 [2002]) report that an increase in serum levels of both TNF.alpha. and TGF.beta. in PBC (e.g., TNF.alpha. is 324 pg/ml in PBC versus 77 in normal controls). Second, they conclude that serum TNF.alpha. and TGF.beta. levels reflect disease severity. Third, they find that ursodiol therapy significantly decreases serum TNF.alpha. and TGF.beta. levels in PBC, but not to normal levels (for example, TNF.alpha. after 2 years of ursodiol therapy was 124 pg/ml, still significantly higher than control values). Since in animal model work both in the lung and the liver TM is able to essentially normalize TNF.alpha. and TGF.beta. levels in affected organs after injury, it is contemplated that TM therapy is beneficial in PBC.

The prevalence of PBC in the U.S. is 65.4 cases for women and 12.1 cases for men (40.2 overall) per 100,000 population. At 402 cases/1 million, and using a U.S. population of 288 million, this calculates out to about 116,000 case prevalence in the U.S., well below the 200,000 figure required to qualify as an orphan disease.

VII. Agents That Bind or Complex Copper

A. Thiomolybdates

The present invention provides methods to prevent and/or treat inflammation and/or fibrosis by administering a therapeutically effective amount of at least one copper binding or complexing agent that includes but is not limited to a thiomolybdate, to a patient in need thereof. Thiomolybdates are molecules comprising molybdenum and sulfur, and include but are not limited to species such as [MoS4 ]2- and [MoO2 S2]2-. These molecules can act as bidentate ligands, and can complex copper. Examples of thiomolybdates include but are not limited to tetrathiomolybdate, trithiomolybdate, dithiomolybdate, and monothiomolybdate. Other examples include complex thiomolybdates, that include but are not limited to a zinc or an iron between two thiomolybdate groups, and that contain thiomolybdate capable of binding or complexing copper. In exemplary complex thiomolybdates, the molecule may have more than four thio groups related to more than one molybdenum. In the following description, it is understood that tetrathiomolybdate is simply an embodiment of the use of a copper binding or complexing thiomolybdates. It is also understood that any thiomolybdate may be utilized as one or several of different salts, such as those described for TM below.

Tetrathiomolybdate (TM) is a compound made up of molybdenum atom surrounded by four sulfur molecules. Various salts of TM are available; salts of TM include but are not limited inorganic cations such as ammonium, zinc, and iron ions, and organic cations such as tetraethyl, tetrapropyl and choline ions. Different salts have differing properties of solubility in water and ingestible solvents (such as alcohol), stability upon storage alone or in formulations, bioavailability to a patient, and toxicity to a patient. Thus, depending upon the use and formulation, any particular salt is selected to maximize solubility in water (or a solvent miscible with water and which can be tolerated by a patient, such as alcohol), to maximize stability upon storage, as for example as the compound or as part of a formulation, to minimize toxicity to a patient, and to maximize bioavailability after administration to a patient.

In some embodiments, the salt of TM is an ammonium salt. TM as the ammonium salt can be purchased from Aldrich Chemical Company (catalog number W 180-0; Milwaukee, Wis.; available in one kilogram bulk lots) as a black powder that is moderately water soluble, yielding a bright red solution; these preparations are also certified pure for human use. The ammonium salt of TM has one undesirable property, that of mild air instability. Thus, the bulk drug should be stored in the absence of oxygen, or the oxygen will gradually exchange with the sulfur, rendering the drug ineffective over time. The bulk drug is therefore stored under argon. Stability assays developed by the inventors indicate that this drug is stable for several years under argon (G J Brewer et al., Arch. Neurol., 48(1):42-47 [1991]). Capsules can be filled by hand, and the drug is stable in capsules for several months at room temperature.

Alternatively, TM, which is generally synthesized as the ammonium salt, may be more stable under air as a different salt. Thus, other salts have been prepared and evaluated for solubility, stability and anticopper activity. In other embodiments, the salt tetrapropyl tetrathiomolybdate (TPTM) has met all desired properties. In other embodiments, the salt choline TM has suitable desirable properties. In yet other embodiments, the salt tetraethyl TM has suitable properties. These exemplary salts of TM have suitable solubility in water, and behave similarly to ammonium salt of TM in in vitro copper complexing studies.

Other pharmaceutically acceptable salts include but are not limited to include salts formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like.

Although it is not necessary to understand the underlying mechanism to practice the invention, and the invention is not intended to be so limited, it is believed that TM acts by forming a tripartite complex with copper and protein (Mills et al., J. Inorg. Biochem., 14:189 [1981]; Mills et al., J. Inorg. Biochem., 14:163 [1981]; and Bremner et al., J. Inorg. Biochem., 16:109 [1982]). It is further believed that TM has two mechanisms of action. Given with meals, it complexes both copper in food and endogenously secreted copper with itself and food protein, and prevents the absorption of copper. Patients can be put into an immediate negative copper balance with TM by administering it with meals. Given between meals, the TM is absorbed into the bloodstream, and complexes serum copper with itself and albumin, rapidly rendering the copper unavailable for cellular uptake. Since free copper in organs is in equilibrium with free copper in blood, free copper in the organs will quickly be reduced to very low levels if the blood copper is bound. This complex is cleared through the kidney and the liver. No matter what its mechanism of action is, TM is a potent and rapidly acting anticopper agent. It is also contemplated that other thiomolybdates complex copper through similar though not necessarily identical mechanisms. In some hypotheses, some thiomolybdates directly bind copper. In yet other hypotheses, a tripartite copper-thiomolybdate-protein complex is degraded in the body, but the thiomolybdate still results in lowering endogenous copper levels. For example, trithiomolybdate, dithiomolybdate, and monothiomolybdate compounds, like tetrathiomolybdate, are believed to form a tripartite complex with copper and protein that renders the copper unavailable, and eventually leads to clearance of the copper-complex.

The only known toxicity of TM discovered in animal studies is through its anticopper effects. Animals given TM in sufficient quantity to produce severe copper deficiency suffer from a variety of copper deficiency-related problems, including anemia (Mills et al., J. Inorg. Biochem., 14:163 [1981]; and Bremner et al., J. Inorg. Biochem., 16:109 [1982]). However, none of these occur if the animal is copper supplemented (Mills et al., J. Inorg. Biochem., 14:189 [1981]), or maintained at a moderate copper level. Tetrathiomolybdate (TM) is a drug that the inventors have developed as an orphan therapy for Wilson's disease, as described further below. The drug does an excellent job of gaining quick control over copper toxicity and preventing the neurological worsening that occurs 50% of the time during initial treatment with a commonly used drug for Wilson's disease, penicillamine (Brewer et al., Arch. Neurol., 48(1):42-47 [1991]; Brewer et al., Arch. Neurol., 51(6):545-554 [1994]; and Brewer et al., Arch. Neurol., 53:1017-1025 [1996]). So far, the inventors have treated 79 Wilson's disease patients with TM, generally for an eight-week period. TM thus fills a very important niche in the initial treatment of Wilson's disease. The Wilson's disease work has provided extensive experience with TM therapy in the human, and provides documentation of TM's extremely low level of toxicity in humans.

In the studies of treating human patients with Wilson's disease studies, one side effect occasionally observed is a reversible anemia, due to TM's anticopper effects. Given in too high a dose, TM renders the bone marrow severely or totally copper deficient. Since copper is required for erythropoiesis, an anemia develops. That anemia is rapidly reversible by simply stopping TM. In the Wilson's disease studies, this over-treatment effect of TM has been diminished by simply reducing the dose to 60 mg per day from the standard 120 mg per day. A second side effect seen during treatment with TM of Wilson's disease, but not in treatment of cancer, is a mild increase in serum transaminase levels (Wilson's patients already have liver disease). This mild increase is diminished or removed by reducing the dose of TM. In humans without Wilson's disease, such as patients with inflammatory and/or fibrotic diseases, a level of mild copper deficiency at a pre-anemia state can be established simply by carefully monitoring ceruloplasmin (Cp) levels during TM therapy. The level of ceruloplasmin is reduced to and maintained at a targeted level; in some embodiments, this targeted level is between about 5 and 15 mg/dl.

TM is eventually metabolized to elemental molybdenum (Mo), so the potential toxicity of Mo has to be considered. However, it turns out that Mo is quite innocuous at the levels produced from breakdown of TM used at the therapeutic regimes described herein. In one example, up to 50 mg of Mo/day is administered for two weeks, then no more than about 25 mg/day is administered for maintenance. High doses of 350 to 1400 mg/day of Mo were previously used for 4-11 months in patients with Wilson's disease, without toxicity (Bickel et al., Quart. J. Med., 50:527 [1957]). Thus, because about 37% of TM by weight is Mo, the dose range of 25-50 mg/day poses no predictable problems, and should be entirely safe.

B. Monitoring Copper Levels

The mechanism of action of TM is to lower systemic or endogenous copper levels. Copper status is evaluated by measuring the level of ceruloplasmin, a copper-containing serum protein secreted by the liver, as the amount of ceruloplasmin is dependent upon copper availability. Measuring total serum copper is not a good indicator for evaluating copper status, because the TM complex with copper accumulates in the blood before it is cleared from the body, thus elevating serum copper in spite of reduced copper availability. Thus, the serum ceruloplasmin, which is directly dependent upon liver copper status, is an accurate indicator of copper status or availability in preferred embodiments.

VIII. Combination Therapy

In the present invention, it is initially contemplated that a method to treat inflammation and/or fibrosis comprises administration of at least one copper binding or complexing agent, which include but are not limited to thiomolybdates of which TM is an example; in this method, treatment is accomplished by administering a single copper binding or complexing agent. It is also contemplated that a combination of more than one copper binding or complexing agent may be administered to a patient; the different agents are chosen from different thiomolybdates, different salts of different thiomolybdates, other copper binding or complexing agents, or any combination thereof. Thus, in some embodiments, the agents comprise a combination of at least two different thiomolybdates, such as a tetrathiomolybdate and a trithiomolybdate; in other embodiments, the agents comprise a combination of at least one thiomolybdate and at least one other copper binding or complexing agents. In yet other embodiments, the agents comprise a combination of at least two different salts of a single thiomolybdate, such as a tetraethyl- and a tetrapropyl-tetrathiomolybdate; in yet other embodiments, the agents comprise a combination of at least two different thiomolybdates, of which at least one thiomolybdate comprises at least two different salts; in yet other embodiments, the agents comprise a combination of at least one thiomolybdate, which comprises a combination of at least two different salts, and at least one other copper binding or complexing agent.

Moreover, it is also contemplated that the methods of the present invention may be combined with other methods generally employed in the treatment of the particular disease or disorder that the patient exhibits. This is particularly true for treatment of diseases for which decreasing copper levels ameliorates does not eradicate the disease; in those cases, it may be advantageous to use additional compounds which eradicate the disease. In other cases, it may be useful to administer drugs in addition to TM in order to obtain additive or synergistic effects. For example, in connection with inflammation, the methods of the present invention include classical or new approaches in treating and/or preventing inflammation. Thus, in some embodiments, the present invention provides a method of treating and/or preventing inflammation comprising administering at least one copper binding or complexing agent as described above to a patient in need thereof, and administering at least one other known or discovered antiflammatory drug; known antiflammatory drugs include but are not limited to steroids, NSAIDS (non-steroidal anti-inflammatory drugs), and chemotherapeutic agents as are used in some auto-immune diseases. In other examples, in connection with fibrosis, the methods of the present invention include classical or new approaches in treating and/or preventing fibrosis. Thus, in some embodiments, the present invention provides a method of treating and/or preventing fibrosis comprising administering at least one copper binding or complexing agent as described above to a patient in need thereof, and administering at least one other known or discovered anti-fibrotic drugs; anti-fibrotic drugs include but are not limited to antibodies or antisense agents directed to specific cytokines or to their receptors, as well as to other molecules which enhance fibrosis. In these embodiments, it is contemplated that the administration of other anti-inflammatory and/or anti-fibrotic drugs are not known to be detrimental in themselves, and that administration of other anti-inflammatory and/or anti-fibrotic drug do not substantially counteract the effectiveness of the endogenous copper lowering therapy by administering copper binding or complexing agents. By substantially counteracting the effectiveness of the endogenous copper lowering therapy, it is meant that the combined therapy lowers endogenous copper sufficiently to observe an amelioration of at least one symptom of a disease or condition. In the embodiments in which at least one additional anti-inflammatory and/or anti-fibrotic drug is administered in combination with the administration of a copper binding or complexing agent, there is no requirement for the combined results to be additive of the effects observed when each treatment is conducted separately, although this is evidently desirable, and there is no particular requirement for the combined treatment to exhibit synergistic effects, although this is certainly possible and advantageous. It is also contemplated that the administration of the different agents or drugs occurs simultaneously, as for example administering the combination of agents and drugs at the same times, and/or at different times during the course of therapy; any combination of administration is contemplated.

IX. Pharmaceutical Compositions and Kits

Pharmaceutical compositions of the present invention will generally comprise an effective amount of an agent for use in the present invention, such as copper binding or complexing thiomolybdates, of which tetrathiomolybdate is an example, dissolved or dispersed in a pharmaceutically acceptable carrier or aqueous medium.

A. Oral Formulations

In preferred embodiments of the present invention, TM is administered orally. Oral administration is effected by a number of means, such as by feeding tubes for administration into the gastrointestinal track, and preferably the duodenum, or by tablets or powders or solutions for administration by mouth. A feeding tube may be preferred for an acute disease, whereas administration by mouth may be preferred for chronic diseases and/or for maintenance, once an appropriate level of copper has been attained. Oral pharmaceutical formulations include but are not limited to tablets or other solids, time release capsules, liposomal forms and the like. Other pharmaceutical formulations may also be used, dependent on the condition to be treated.

As described in detail herein, it is contemplated that certain benefits will result from the manipulation of the agents for use in the present invention, such as copper binding or complexing thiomolybdates, to provide them with a longer in vivo half-life. Slow release formulations are generally designed to give a constant drug level over an extended period. Increasing the half-life of a drug, such as agents for use in the present invention, such as copper binding or complexing thiomolybdates, is intended to result in high plasma levels of TM upon administration, which levels are maintained for a longer time, but which levels generally decay depending on the pharmacokinetics of the construct. Slow release formulations of the instant compositions and combinations thereof are contemplated for some uses in the present invention.

Appropriate solutions of the agents for use in the present invention, such as copper binding or complexing thiomolybdates, of which tetrathiomolybdate is an example, pharmaceutical forms suitable for administration, compositions comprising the agents, formulations with the agents, and carriers may be similar to those described below.

B. Parenteral Formulations

In addition to the compounds formulated for parenteral administration, the agents for use in the present invention, such as copper binding or complexing thiomolybdates, may be formulated for parenteral administration, e.g., formulated for injection via the intravenous, intramuscular, sub-cutaneous or other such routes, including direct instillation into a disease site. The preparation of an aqueous composition that contains one or more agents for use in the present invention, such as copper binding or complexing thiomolybdates, as an active ingredient will be known to those of skill in the art in light of the present disclosure. Typically, such compositions can be prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for using to prepare solutions or suspensions upon the addition of a liquid prior to injection can also be prepared; and the preparations can also be emulsified.

Solutions of the active compounds as freebase or pharmacologically acceptable salts can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions; formulations including sesame oil, peanut oil or aqueous propylene glycol; and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases the form should be sterile and should be fluid to the extent that easy flow through a syringe exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.

Compositions comprising the agents for use in the present invention, such as copper binding or complexing thiomolybdates, can be formulated into a composition in a neutral or salt form. Pharmaceutically acceptable salts have been described above.

The carrier can also be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. Proper fluidity can be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the contamination with microorganisms can be obtained by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it may be desirable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum-drying and freeze-drying techniques which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective. Formulations are easily administered in a variety of dosage forms, such as the type of injectable solutions described above, but drug release capsules and the like can also be employed.

Suitable pharmaceutical compositions in accordance with the invention will generally include an amount of one or more of the agents for use in the present invention, such as copper binding or complexing thiomolybdates, admixed with an acceptable pharmaceutical diluent or excipient, such as a sterile aqueous solution, to give a range of final concentrations, depending on the intended use. The techniques of preparation are generally well known in the art as exemplified by Remington's Pharmaceutical Sciences, 16th Ed. Mack Publishing Company, 1980, incorporated herein by reference. It should be appreciated that endotoxin contamination should be kept minimally at a safe level, for example, less that 0.5 ng/mg protein. Moreover, for human administration, preparations should meet sterility, pyrogenicity, general safety and purity standards as required by FDA Office of Biological Standards.

The therapeutically effective doses are readily determinable using an animal model, as shown in the studies detailed herein. Experimental animals with induced inflammatory and/or fibrotic diseases are frequently used to optimize appropriate therapeutic doses prior to translating to a clinical environment. Such models are known to be very reliable in predicting effective anti-inflammatory or anti-fibrotic strategies. For example, bleomycin mice, such as described in Example 1, are appropriate models of pulmonary fibrosis in humans. One can use such art-accepted mouse models to determine working ranges of agents for use in the present invention, such as copper binding or complexing thiomolybdates, that give beneficial anti-inflammatory and/or anti-fibrotic effects with minimal toxicity.

C. Therapeutic Kits

The present invention also provides therapeutic kits comprising agents for use in the present invention which bind or complex copper, such as thiomolybdates, and of which tetrathiomolybdate is an example, as described herein. Such kits generally comprise, in suitable container means, a pharmaceutically acceptable formulation of at least one agent for use in the present invention, such as copper binding or complexing thiomolybdates, in accordance with the invention. The kits may also comprise other pharmaceutically acceptable formulations, such as any one or more of a range of anti-inflammatory and/or anti-fibrotic drugs.

The kits may have a single container means comprising an agent that binds or complexes copper, such as a thiomolybdate, with or without any additional components, or they may have distinct container means for each desired agent. In some embodiments, kits of the present invention comprise an agent for use in the present invention, such as copper binding or complexing thiomolybdates, packaged in a kit for use in combination with the co-administration of a second agent, such as an anti-inflammatory or anti-fibrotic agent as described above. In such kits, the components may be pre-complexed, either in a molar equivalent combination, or with one component in excess of the other; or each of the components of the kit may be maintained separately within distinct containers prior to administration to a patient.

When the components of the kit are provided in one or more liquid solutions, the liquid solution is generally an aqueous solution, with a sterile aqueous solution being particularly preferred. However, the components of the kit may be provided as dried powder(s). When reagents or components are provided as a dry powder, the powder can be reconstituted by the addition of a suitable solvent. It is envisioned that the solvent may also be provided in another container means. One of the components of the kit may be provided in capsules for oral administration.

The container means of the kit will generally include at least one vial, test tube, flask, bottle, syringe or other container means, into which an agent for use in the present invention, such as copper binding or complexing thiomolybdates, and any other desired agent, may be placed and, preferably, suitably aliquoted. Where additional components are included, the kit will also generally include a second vial or other container into which these additional components are placed, enabling the administration of separated designed doses. The kits may also comprise a second and/or third container means for containing a sterile, pharmaceutically acceptable buffer or other diluent.

The kits may also comprise a means by which to administer an agent for use in the present invention, such as copper binding or complexing thiomolybdates, to an animal or human patient, e.g., one or more needles or syringes, or even an eye dropper, pipette, or other such like apparatus, from which the formulation may be injected into the animal or applied to a feeding tube or ingested orally. The kits of the present invention will also typically include a means for containing the vials, or such like, and other component, in close confinement for commercial sale, such as, e.g., injection or blow-molded plastic containers into which the desired vials and other apparatus are placed and retained.

For human use, in preferred embodiments, the kits further comprise appropriate instructions and labels (e.g., as required by the FDA) for use of copper binding or complexing agents as described herein.

X. Inflammatory Disease, Fibrotic Diseases, Injury Response, and Treatment thereof

The compositions and methods provided by this invention are broadly applicable to the treatment of any inflammatory and/or fibrotic disease, which includes response to injury. In some embodiments, the inflammatory and/or fibrotic disease is a result of the activation or over-activation of transforming growth factor beta (TGF.beta.). Exemplary fibrotic diseases that may be treated by a method of the present invention include, but are not limited to, pulmonary disease including pulmonary fibrosis and acute respiratory distress syndrome, liver disease including liver cirrhosis and hepatitis C, kidney disease including renal interstitial fibrosis, scleroderma, cystic fibrosis, pancreatic fibrosis, keloid, secondary fibrosis in the gastrointestinal tract, hypertrophic burn scars, myocardial fibrosis, Alzheimer's disease, retinal detachment inflammation and/or fibrosis resulting after surgery, and graft versus host and host versus graft rejections.

Currently, most of these diseases do not have an effective treatment. However, even if another treatment is perceived to exist in connection with a certain category of patients or for a certain type of disease, the perceived treatment does not in any way negate the basic utility of the methods of the present invention in connection with the treatments of all patients having an inflammatory and/or fibrotic disease.

It is contemplated that the methods of the present invention are widely or entirely applicable to the treatment of all inflammatory and/or fibrotic diseases, irrespective of the particular phenotype or localization of the inflammation or fibroses themselves. However, the particular type of disease may be relevant to the use of the methods of the present invention in combination with secondary therapeutic agents, as described above.

It is further contemplated that certain types of inflammatory and/or fibrotic diseases may be more amenable to treatment with a method of the present invention. Thus, some diseases may respond to treatment with less effect on inflammation and/or fibrosis. Although it is not necessary to understand the underlying mechanism, and the invention is not intended to be limited to any particular mechanism, it is contemplated that this might be due to slight differences in the cytokine and other pathogenic mechanisms from one disease to another. This phenomena is observed in experimental animals, and may occur in human treatments. Such considerations are taken into account in conducting both the pre-clinical studies in experimental animals and in optimizing the doses for use in treating any particular patient or groups of patients.

There are realistic objectives that may be used as a guideline in connection with pre-clinical testing before proceeding to clinical treatment. However, this is generally more a matter of cost-effectiveness than overall usefulness, and is a means for selecting the most advantageous compounds and doses. In regard to their basic utility, any composition or combination comprising a copper binding or complexing agent such as thiomolybdate that results in any consistent anti-inflammatory and/or anti-fibrotic effects defines a useful compound. Even in those circumstances where the anti-inflammatory and/or anti-fibrotic effects are towards the low end of the range, it may be that the therapy of the present invention is as or even more effective than other known therapies in the context of particular anti-inflammatory and/or anti-fibrotic targets, and especially where other factors (such as desirable or undesirable side effects, or quality of life) may be important. Even if it becomes evident to the clinician that particular anti-inflammatory and/or anti-fibrotic diseases cannot be effectively treated in the intermediate or long term, it does not negate the utility of the therapy of the present invention, particularly where it is about as effective as other known strategies, or where it is effective after other conventional therapies have failed. It is not predicted that resistance to therapy of the present invention can develop.

In the present invention, an agent that binds or complexes copper such as a thiomolybdate is administered in a therapeutically effective amount to a patient suffering from an inflammatory and/or fibrotic disease. The term "therapeutically effective amount" is a functional term referring to an amount of material needed to make a qualitative or quantitative change in a clinically measured parameter for a particular subject. For example, prior to administration, the subject may exhibit measurable symptoms of disease (for example, pulmonary congestion and/or difficulty breathing; evidence of hepatitis, or decrease in liver function; evidence or kidney inflammation or decrease in kidney function; etc), which upon administration of a therapeutically effective amount the measurable symptom is found to change over time. A therapeutically relevant effect relieves to some extent one or more symptoms of a disease or condition or returns to normal either partially or completely one or more physiological or biochemical parameters associated with or causative of the disease.

In particular, the term refers to an amount of an agent that binds or complexes copper such as thiomolybdate effective to treat an inflammatory and/or fibrotic disease upon administration to a patient suffering from such a disease. Treatment includes but is not limited to preventing the onset or shortening the course or severity of or reversing the effects of inflammatory and/or fibrotic disease; thus, a therapeutically effective amount includes a prophylactically effective amount. Such effects are achieved while exhibiting negligible or manageable adverse side effects on normal, healthy tissues of the patient. Thus, the "therapeutically effective amount" can vary from patient to patient, depending upon a number of factors, including but not limited to the type of disease, the extent of the disease, and the size of the patient.

An objective of the therapeutic regimes of the present invention is to reduce the endogenous copper level to a target level, and then to maintain that level for a period of time sufficient to prevent the onset or to shorten the course or severity of or to reverse the effects of inflammatory and/or fibrotic disease. The period of time sufficient to both reduce endogenous copper level and to maintain it to prevent the onset or to shorten the course or severity of or to reverse the effects of inflammatory and/or fibrotic disease is referred to as a "therapeutically effective time". As described earlier, the level of endogenous copper can be monitored by measuring blood ceruloplasmin (Cp) levels. In some embodiments, the levels of blood ceruloplasmin decrease by 10%; in other embodiments, these levels decrease by about 25%; in yet other embodiments, these levels decrease by about 50%; in still other embodiments, these levels decrease by about 90%. Alternatively, ceruloplasmin levels decrease to between about 5 to 15 mg/dl. The time period in which to reduce endogenous copper levels will vary, depending upon the disease and the patient's general health and condition; typically, this time depends upon the amount of copper-binding agent per dose, and frequency of dose administration per treatment period. Generally, for acute diseases, such as ARDS, it is desirable to decrease endogenous copper levels as rapidly as possible; this is because patients are at risk of dying quickly, and it is therefore desirable to initiate quick intervention. Under these circumstances, it is preferable to use initially a much higher loading dose of a copper-binding or complexing agent than might be used for a chronic disease or condition. For both acute and chronic diseases, initial doses of copper binding or complexing agents might be higher and administered more frequently in order to fairly rapidly decrease endogenous copper to the target levels; these doses are referred to as induction doses. Subsequent doses of copper binding or complexing agents to maintain endogenous copper at the target level may be lower, and administered less frequently; these doses are referred to as maintenance doses.

In designing appropriate doses of the agents that bind or complex copper such as thiomolybdate and combinations therewith, and/or that effectively lower endogenous copper, one may readily extrapolate from animal studies, as for example as described further below, in order to arrive at appropriate doses for clinical administration. To achieve this conversion, one would account for the mass of the agents administered per unit mass of the experimental animal, and yet account for the differences in the body surface area between the experimental animal and the human patient. All such calculations are well-known and routine to those of ordinary skill in the art. Accordingly, using the information provided herein, it is contemplated that useful daily doses of the agents that bind or complex copper such as thiomolybdate, and/or that effectively lower endogenous copper, for use in human administration would be between about 20 mg and about 200 mg per patient per day. Notwithstanding this stated range, it is contemplated that, given the parameters and guidance described above, further variations in the active or optimal ranges are encompassed within the present invention.

Induction doses contemplated are generally about 180 mg per day. Daily maintenance doses contemplated are generally between about 20 mg and about 180 mg; between about 25 and about 160 mg; between about 50 and about 150 mg; between about 30 and about 125 mg; between about 40 mg and about 100 mg; between about 35 and about 80 mg; between about 20 and about 65 mg; between about 30 mg and about 50 mg; about 40 mg; or in any particular range using any of the foregoing recited exemplary doses or any value intermediate between the particular stated ranges. Although daily doses in and around about 60 mg to about 120 mg, or in and around about 20 to about 180 mg, are typical, it is contemplated that lower doses may be more appropriate in combination with other agents, or under conditions of maintenance, and that high doses can still be tolerated, particularly given the fact that the agents that bind or complex copper such as a thiomolybdate and/or that effectively lower endogenous copper for use in the invention are not themselves cytotoxic. Even if certain adverse side effects do occur, this should not necessarily result in toxicity that cannot be counteracted by normal homeostatic mechanisms, which is believed to lessen the chances of significant toxicity to healthy tissues.

The values described above can also be expressed in terms of mg/kg of body weight. As described above, the biologically or therapeutically effective amount can vary, depending upon the size of the animal or human patient. However, taking the average weight of a human male as about 70 kg, the biologically or therapeutically effective amount of the agent that binds or complexes copper such as a thiomolybdate for an average human male would be between about 0.3 mg/kg and about 3 mg/kg.

Another objective of the therapeutic regimes of the present invention is generally to produce the maximum anti-inflammatory and/or anti-fibrotic effects while keeping the dose below the levels associated with unacceptable toxicity. However, as noted above, in acute diseases or conditions, it may be necessary to administer initial high doses to rapidly decrease endogenous copper levels. In addition to varying the dose itself, the administration regimen can also be adapted to optimize the treatment strategy. A currently preferred maintenance treatment strategy is to administer between about 20 mg and about 200 mg of the agents that bind or complex copper such as a thiomolybdate or combination thereof, or which effectively lower endogenous copper, from about 3 to about 6 or more times per day, approximately half of the doses with meals, and approximately half of the doses between meals. In administering the particular doses themselves, one would preferably provide a pharmaceutically acceptable composition to the patient systemically. Oral administration is generally preferred. An exemplary induction dosage regime for a patient suffering from a chronic inflammatory and/or fibrotic disease is about 40 mg three times daily with meals, and about 60 mg at bedtime. Exemplary maintenance dosage regimes for a patient suffering from a chronic inflammatory and/or fibrotic disease is about 20 to 180 mg total per day, taken approximately proportionately as indicated for the exemplary induction dosage regime, or taken at fewer times per day, for example, with breakfast and with dinner.

XI. Efficacy of Tetrathiomolybdate in Lowering Endogenous Copper

Prior Use to Treat Wilson's Disease

The efficacy and safety of tetrathiomolybdate to lower endogenous copper levels in both animal and human patients has been well documented in its use to treat Wilsons's disease, which is characterized by an increase in endogenous levels of copper, generally to toxic levels. A description of Wilson's disease, previous therapy regimes, the discovery of tetrathiomolybdate, it's toxicity and efficacy, both alone and in comparison to other anti-copper agents, and its utility in treating Wilson's disease, are provided below as part of the description of the methods of the present invention.

A. Wilson's Disease and its Existing Treatments

Wilson's disease is an autosomal recessive disorder of copper metabolism. In this disorder, the excretion of copper into the bile appears to be defective, and there is reduced hepatic incorporation of copper into ceruloplasmin, leading to an accumulation of toxic levels of copper in plasma and most body tissues. Wilson's disease usually leads to hepatic and/or neurologic dysfunction.

The therapy of Wilson's disease can be divided into two broad categories (G J Brewer and Yuzbasiyan-Gurkan, Medicine, 71(3):139-164 [1992]; and G J Brewer, Wilson's Disease: A Clinician's Guide to Recognition, Diagnosis, and Management (Kluwer Academic Publishers, Boston) [2001]). These two categories are initial therapy in acutely ill patients, and maintenance therapy. Initial therapy is that period of time during which a newly presenting patient is still suffering from acute copper toxicity, generally the first few weeks to months of therapy. Maintenance therapy is essentially the rest of the patient's life, or that period of time after the copper levels have been brought down to a subtoxic threshold, and the patient is on therapy simply to prevent the recurrence of copper accumulation and copper toxicity.

For the maintenance therapy of Wilson's disease, three drugs were previously used. These include the oldest available drug, penicillamine (Walshe, Am. J. Med., 21:487 [1956]), a drug called trien or trientine which was developed for patients who are intolerant of penicillamine (Walshe, Lancet, 1:643-647 [1982]), and zinc acetate (G J Brewer and Yuzbasiyan-Gurkan, Medicine, 71(3):139-164 [1992]; Brewer and Yuzbasiyan-Gurkan, in Textbook of Clinical Neruopharmacology and Therapeutics, 2nd Edition (Klawans, Goetz, Tanner, eds; Raven Press, New York; pp. 191-205 [1992]); G J Brewer et al., Annals. Int. Med., 99:314-320 [1983]; Hill et al., Hepatology, 7:522-528 [1987]; Hill et al., Am. J. Med. Sci., 12:344 [1986]; Brewer et al. (1987) J. Lab. Clin. Med. 109:526-531; Brewer et al. (1987) Proc. Soc. Exper. Biol. Med. 7:446-455; Brewer et al. (1987) Sem. Neurol. 7:209-220; Yuzbasiyan-Gurkan et al. (1989) J. Lab. Clin. Med. 114:520-526; Brewer et al. (1989) J. Lab. Clin. Med. 114:633-638; Lee et al. (1989) J. Lab. Clin. Med. 114:639-645; Brewer et al. (1990) J. Trace Elem. Exp. Med. 3:227-234; Brewer et al. (1991) J. Lab. Clin. Med. 118:466-470; Brewer and Yuzbasiyan-Gurkan (1989) Dig. Dis. 7(4): 178-1923; Brewer et al. (1992) JAVMA 201:564-568; G J Brewer et al., J. Vet. Int. Med., 6:41-43 [1992]; Yuzbasiyan-Gurkan et al., J. Lab. Clin. Med., 120:380-386 [1992]; Brewer et al., J. Amer. Coll. Nut., 12(1):26-30 [1993]; G J Brewer et al., Amer. J. Med. Sci., 305(4):199-202 [1993]; In Essential and Toxic Trace Elements in Human Health and Disease: An Update (Prasad, ed; Allan R. Liss, New York; PCBR 380:129-145), G J Brewer et al., J. Lab. Clin. Med., 123:849-858 [1993]; G J Brewer, Nutrition and the MD, 19(12) [1993]; Hoogenraad et al., Lancet, 2:1262-1263 [1978]; Hoogenraad et al., Eur. Neurol., 18:205-211 [1979]; Hoogenraad et al., J. Neurol. Sci., 77:137-146 [1987]). In the past, it was generally believed that zinc provided an effective maintenance therapy with a very low level of toxicity.

About two thirds of patients who present with Wilson's disease present with symptoms referable to the brain (G J Brewer et al., JAMA, 201:564-568 [1992]; Scheinberg and Sternlieb, In: Major Problems in Internal Medicine, Vol. XXIII (W. B. Saunders Company, Philadelphia) [1984]; and Danks, In: Metabolic Basis of Inherited Diseased, Vol. 1, Sixth Ed. (Scriver, Beaudet. Sly, Valle, eds; McGraw Hill, New York; pp. 1411-1431 [1989]; and G J Brewer, Wilson's Disease: A Clinician's Guide to Recognition, Diagnosis, and Management (Kluwer Academic Publishers, Boston [2001]). These can be neurologic symptoms or symptoms of psychiatric nature in the beginning, with neurologic symptoms later. Therapy for these patients was not nearly as straightforward as it was for maintenance phase patients. It was found that approximately 50% of these patients who were treated with penicillamine became worse rather than better (G J Brewer et al., Arch. Neurol., 44:490-494 [1987]). Half of these patients who worsen, or about 25% of the original sample, never recovered to their pre-penicillamine baseline. In other words, penicillamine induced additional irreversible damage.

The mechanisms underlying this worsening are not known with certainty, although it is likely that the mobilization of hepatic copper by the drug further elevates brain copper. The inventors have shown that this mechanism can occur in a rat model. Regardless of the mechanism, neurologically presenting patients very often ended up much worse after being treated initially with penicillamine. In fact, even presymptomatic patients could develop neurologic disease after being initiated on penicillamine (Glass et al., Arch. Neurol., 47:595-596 [1990]; and G J Brewer et al., Arch. Neurol., 51:304-305 [1994]). It was not known whether trientine exhibits the phenomenon of neurological worsening when used as initial therapy, because it has not been used very much in this kind of situation. It would not be surprising if trientine exhibited this problem to some degree, because its mechanism of action is believed to be similar to that of penicillamine; however, it is anticipated that the problematic effects of trientine would be less serious, as its effects on copper seem to be somewhat gentler.

Zinc is not an ideal agent for the initial treatment for this type of patient. Zinc has a relatively slow onset of action, and produces only a modest negative copper balance. Thus, during the several months required for zinc to bring copper down to a subtoxic threshold, patients may be at risk for further copper toxicity and worsening of their disease.

B. Tetrathiomolybdate

The discovery of TM began with observations of cattle and sheep which developed copper deficiency when grazing on pasturages with high molybdenum (Mo) content (Ferguson et al., J. Agr. Sci., 33:44 [1943]; Dick and Bull, Aust. Vet. J., 21:70 [1945]; Miller and Engel, Fed. Proc., 19:666 [1960]). It was established that administration of supplementary Mo impaired copper metabolism in ruminants (Macilese Ammerman et al, J. Nutr., 99:177 [1969]); however, Mo had little effect on non-ruminant animals such as rats (Mills et al, J. Nut., 65:129 [1958]; Cox et al., J. Nutr., 70:63 [1960]). The answer to the different effects of Mo came from observations which suggested that the administered Mo was converted to thiomolybdates in the rumen as a result of the high sulfide metabolism there, and that thiomolybdates were the active anti-copper agents (Dick et al., J. Agri. Sci., 85:567 [1975]). This theory was confirmed when thiomolybdate compounds were given to rats and produced anti-copper effects (Mills et al., J. Inorg. Biochem., 14:189 [1981]; Mills et al., J. Inorg. Biochem., 14:163 [1981]; and Bremner et al., J. Inorg. Biochem., 16:109 [1982]). The tetra-substituted compound, tetrathiomolybdate or TM, appeared to be the most potent of the thiomolybdates initially tested.

The anti-copper effects TM are believed to be based upon two modes of action of TM (Mills et al., J. Inorg. Biochem., 14:189 [1981]; and Mills et al., J. Inorg. Biochem., 14:163 [1981]; Bremner et al., J. Inorg. Biochem., 16:109 [1982]; and Gooneratne et al., Br. J. Nutr., 46:469 [1981]). One mechanism operates in the gastrointestinal or GI tract, and the other in the blood. In the GI tract, TM forms complexes with copper and food proteins (or other proteins) that are not absorbed. This absorption block involves not only food copper, but also the rather considerable amount of endogenously secreted copper in saliva, gastric juice and other GI tract secretions (Allen and Solomons, In: Absorption And Malabsorption Of Mineral Nutrients, Solomons and Rosenberg (Eds.) Alan R. Liss, Inc., New York, 12:206 [1984]). Although both TM and zinc are apparently effective in the GI tract, TM offers several advantages over zinc. One advantage is that TM is a more effective blocker of copper absorption than zinc, because zinc acts only in those areas of the small intestine where metallothionein can be induced (Yuzbasiyan-Gurkan et al., J. Lab. Clin. Med., 120:380-386 [1992]), where in contrast, TM is effective the entire length of the GI tract. Another advantage of TM over zinc is that TM acts immediately; therefore, it does not have a lag period required for the induction of metallothionein.

The second mode of action of TM is in the blood. TM given at times away from meals is relatively well absorbed into the blood. There it forms complexes with copper and albumin, rendering the complexed copper unavailable for cellular uptake (Gooneratne et al., Br. J. Nutr., 46:469 [1981]). The normal plasma copper is in two primary pools. Most of the plasma copper in normal persons is part of the ceruloplasmin molecule. This copper is essentially unavailable for ready exchange with cells and is considered non-toxic. The other pool of copper is more loosely bound to albumin and small molecules, such as amino acids. This pool of copper is greatly expanded during acute copper toxicity in Wilson's disease, and is readily available for cellular uptake and is, therefore, potentially toxic (Scheinberg and Sternlieb (1984) In: Major Problems In Internal Medicine, Vol. XXIII, Saunders Company, Philadelphia). When TM enters the blood, it complexes with this latter copper and renders it, like the ceruloplasmin copper, unavailable for cellular uptake and for further toxicity.

Very good evidence exists that TM-complexed copper is unavailable for cellular uptake. The most direct evidence is that in sheep levels of copper in the plasma which would normally be high enough to produce hemolytic anemia do not do so in the presence of TM (Gooneratne et al., Br. J. Nutr., 46:469 [1981]). It was shown that the TM bound copper does not permeate the erythrocyte. This is direct evidence that TM-complexed copper does not permeate cells.

C. Tetrathiomolybdate Toxicity and Efficacy

Considerable work on the potential toxicity of TM has been carried out in rats (Mills et al., J. Inorg. Biochem., 14:189 [1981]; and Bremner et al., J. Inorg. Biochem., 16:109 [1982]). Approximately 6 mg of TM per kilogram of diet shows substantial effects on copper levels in rats, including a reduction of plasma ceruloplasmin and a reduction in liver and kidney copper. At approximately 12 mg of TM, all of these changes were increased and, in addition, liver Mo was increased. Mild anemia was present, and skeletal lesions were present in one of six animals. At approximately 18 mg of TM, the anemia was severe. Melanogenesis of hair was impaired, diarrhea was present, growth rate was markedly impaired, and all animals had skeletal lesions characterized by dysplasia in the epiphyseal cartilage cells of long bones, resorption of trabecular bone, and structural changes in ligaments.

It was later shown that all of the toxic effects of TM, up to 36 mg of TM per kilogram of diet, could be prevented by oral supplementation with copper, or with intraperitoneal injection of copper (Mills et al., J. Inorg. Biochem., 14:163 [1981]). Thus, it appears that all the toxic lesions induced by TM are due to copper deficiency induced by the TM. In support of this hypothesis, almost all of the above lesions are induced by dietary copper deficiency, the two exceptions being the skeletal lesions and the enterocyte mitochondrial damage which leads to diarrhea. The reason that these last two lesions are seen with TM administration, but may not be seen in dietary copper deficiency, could be related to the severity and the rapidity of the copper deficiency induced by TM. With dietary copper deficiency, there is always some contaminating copper available, and rapidly dividing cells such as the enterocyte and epiphyseal cells may obtain enough copper to prevent the lesions. The prevention of these two lesions as well as all of the other TM induced lesions by copper supplementation indicates that the lesions are probably due to copper deficiency.

Other publications reported the results of examining gut pathology in rats receiving approximately 18 mg of TM per kilogram of diet (Fell et al., J. Com. Pathol., 89:496 [1979]). These rats also received approximately 3 mg of copper per kilogram of diet. In these rats, observed gut pathology involving cell apoptosis, edema, and necrosis was attributed to hypocuprosis, although this was not proven. It is probable that a higher copper supplement was required for protection, in view of the observations that all such problems were prevented by adequate copper supplementation (Mills et al. J. Inorg. Biochem., 14:163 [1981]).

Wilson's disease patients have a huge store of excess copper, so none of the TM toxicities due to copper deficiency are a risk in these patients. Even in the case of the skeletal and enterocyte lesions, since copper administration is protected, the Wilson's disease patient with excessive stores of copper should also be protected.

The effect of TM on copper loaded sheep has also been studied (Gooneratne et al, Br. J. Nutr., 46:457 [1981]). It is well known that sheep are quite susceptible to copper toxicity, usually developing hepatic failure and hemolytic anemia. The studies involved loading sheep dietarily with copper to the point of initiation of hepatic damage, then giving TM intravenously in doses of 50 or 100 mg 2x weekly for up to 11 weeks. Five of the 26 sheep died during the study. All deaths were attributed to copper toxicosis based on autopsy results. Three of the five deaths occurred in control animals who received copper but not TM. One death occurred after an animal had received only one dose of TM, and another in an animal who had received only 4 doses of TM. It is clear that these two animals died from copper toxicity prior to the ability of TM to rescue them. If animals survived the initial onset of copper toxicosis, they were protected from further copper toxicity by TM, even though in some cases copper administration was continued. These animals tolerated up to 22 injections of TM without clinical problems.

Support for the beneficial effect of administering TM by either intravenous injection (Humphries et al., Vet. Record, 119:596-598 [1986]) or by subcutaneous injection (Humphries et al., Vet. Record, 123:51-53 [1988]) in protecting sheep against severe hepatic copper toxicity has also been shown. TM not only reduced the amount of hepatic copper, but the actual liver damage. TM was also used prophylactically to prevent copper toxicity in commercial sheep flocks. Over 400 animals have been treated with TM with no adverse side effects (Humphries et al., Vet. Record, 123:51-53 [1988]).

Preliminary work also indicated that TM may be dramatically effective against copper toxicity in the LEC rat model (Suzuki et al., TOXIC, 83:149 [1993]). The genetic defect in these rats has been recently shown to be due to a defect in the Wilson's disease gene (Wu et al., Nat. Genet., 7:541 [1994]). These rats develop severe liver disease and usually die. TM has been very effective in treating these animals in the late stages of their liver disease.

Molybdenum metabolism in sheep has been studied after the intravenous injection of 99 Mo labeled TM (Mason et al., J. Inorg. Biochem., 19:153 [1983]). There was a rapid disappearance from plasma during the initial 15 minutes, and then a slow disappearance with a half-time of about 40 h. The TM was transformed step wise to molybdate, and over 90% was excreted in urine compared to 5% in feces. The same group published subsequently on 99 Mo and 35 S metabolism after intravenous injection of double labeled TM in sheep (Hynes et al., Brit. J. Nutr., 52:149 [1984]). Most of the 99 Mo and 35 S were associated initially with albumin. Displaced or unbound TM was rapidly hydrolyzed to molybdate and sulfate. There was no evidence of an irreversible interaction of either 35 S or 99 Mo with copper and plasma despite the appearance of a TCA insoluble copper fraction.

It is clear that in the presence of high levels of copper, TM administration results in the accumulation of copper complexed with TM in both the liver and kidneys (Jones et al., Res. Vet. Sci., 37:273 [1984]; and Bremner and Young, Br. J. Nutr., 39:325 [1978]). However, there is no evidence of a storage disease associated with this complex. Current theory holds that the complex is disassociated and that the TM is metabolized to oxymolybdates and excreted (Mason et al, J. Inorg. Biochem., 19:153 [1983]). The copper then enters other pathways in the liver. In the presence of high levels of metallothionein, the copper would most likely be taken up by metallothionein. In the kidneys, the evidence is that the copper is simply excreted.

Two cases of reversible bone marrow depression have been reported in patients receiving TM for maintenance therapy (Harper and Walshe, Br. J. Hematol., 64:851-8 [1986]). The inventors have observed reversible anemia in seven patients. These patients had a strong response to therapy, and likely ended up with localized, bone marrow copper deficiency. Since copper is required for heme synthesis, this appears to be a manifestation of over-treatment, at least as far as the bone marrow is concerned. Since TM is such an effective anticopper agent, it would not be unexpected for over-treatment to occur during maintenance therapy with TM, as was previously observed (Harper and Walshe, Br. J. Hematol., 64:851-853 [1986]).

D. Molybdenum (Mo) Toxicity

About 37% of TM is Mo. The normal intake of Mo is about 350 .mu.g/day (Seelig, Am. J. Clin. Nutr., 25:1022 [1972]), or the equivalent amount of Mo that would be in about 1.0 mg of TM. Molybdenum seems to be quite well tolerated by the human. Relatively high doses of 5-20 mg/kg/day of Mo (equivalent to the Mo in 1-4 g of TM) were used for 4-11 months in patients with Wilson's disease in a 1957 study, without known toxicity (Bickel et al, Quart. J. Med., 50:527 [1957]). However, it was not effective, because as pointed out earlier, TM is the active metabolite, and that is formed efficiently from Mo only in ruminants.

E. Additional Anti-Copper Drugs

1. Penicillamine

Penicillamine is the drug that has been used the most, and is the best known. However, it should be the last choice for initial treatment of patients suffering from neurological symptoms because of the very high risk of worsening their neurologically symptoms (G J Brewer et al., Arch. Neurol., 44:490-494 [1987]; and G J Brewer et al., Arch. Neurol., 51:304-305 [1994]). Another problem with penicillamine is that about a quarter to a third of patients develop an initial hypersensitivity syndrome which requires significant interventions, such as temporarily stopping the drug and restarting it at a lower dose, usually with concurrent corticosteroid administration. This is a somewhat frightening experience for patients who are already ill, and prevents the attending physician in the inventors' study from being blinded. Finally, there is a long list of other side effects that can occur with penicillamine during the first few weeks of therapy. These include bone marrow depression, proteinuria, and auto-immune disorders.

2. Zinc

Zinc was used for the comprehensive treatment of Wilson's disease including initial treatment (Hoogenraad et al., Lancet, 2:1262-1263 [1978]; Hoogenraad et al., Eur. Neurol., 18:205-211 [1979]; and Hoogenraad et al., J. Neurol. Sci., 77:137-146 [1987]). However, zinc was not ideal for initial therapy (by itself) because it is rather slow acting. Thus, it takes approximately two weeks to achieve intestinal metallothionein induction and a negative copper balance in Wilson's patients (Yuzbasiyan-Gurkan et al., J. Lab. Clin. Med., 120:380-386 [1992]). At the two week point, zinc immediately reverses the +0.54 mg daily (positive) copper balance these patients average, but the negative copper balance induced is rather modest, averaging -0.35 mg daily (negative) copper balance (G J Brewer et al., J. Trace Elem. Exp. Med., 3:227-234 [1990]; G J Brewer et al., Amer. J. Med. Sci., 305:(4)199-202 [1993]). Due to this low rate of copper removal, it takes as long as six months of zinc therapy to bring urine copper and nonceruloplasmin plasma copper (the potentially toxic copper measured in the blood), down to subtoxic levels.

TM is a more effective blocker of copper absorption than zinc, since zinc acts only in those areas of the small intestine where metallothionein can be induced. In contrast, TM works all up and down the gastrointestinal track. The other advantage of TM over zinc in this setting is that TM acts immediately. It does not have a lag period required for the induction of metallothionein.

3. Trientine

Trientine acts by chelation and urinary excretion of copper (Walshe, Lancet, 1:643-647 [1982]). A therapeutic dose (1,000-2,000 mg/day) usually produces only about half as much cupruresis as a similar dose of penicillamine. Nonetheless, trientine is capable of an initial production of a several mg negative copper balance, much greater than zinc. Typically, this 4-5 mg cupruresis decreases during the first few weeks of therapy to a more modest, but still substantial, 2-3 mg. Ingestion of copper is about 1 mg/day, with obligatory, non-urine losses of about 0.5 mg. Thus a cupruresis of 2-3 mg produces a negative copper balance of 1.5 to 2.5 mg/day.

Trientine is officially approved for use in patients intolerant of penicillamine therapy. Because of this, and because it was introduced much later than penicillamine, it has not been used and reported on very extensively. It has not had a formal toxicity study. It appears to have substantially less risk of side effects then penicillamine. An initial hypersensitivity problem has not been reported. It does cause proteinuria, after several weeks of use in about 20% of patients. It can also occasionally produce bone marrow depression and autoimmune abnormalities, although the latter is usually after prolonged use.

So far, trientine has not been reported to cause initial worsening in neurological patients, but its sole use in this type of patient is probably very limited. Anecdotally, the inventors have received patients in transfer who worsened on penicillamine, were switched briefly to trientine, and when they became worse (or failed to improve) were transferred to the inventors for TM therapy. In patients with this history, it is impossible to know if trientine played any role in worsening. Theoretically, it could, because as with penicillamine, trientine mobilizes copper, producing a higher blood level to achieve urinary excretion. But whether this increased level of blood copper translates into increased brain levels, and increased neurotoxicity, is unknown.

XII. Results of Tetrathiomolybdate Therapy for Wilson's Disease

Over a period of several years, the inventors carried out an open label study of the use of TM for initial treatment of neurologically presenting Wilson's disease patients. The inventors also developed both a spectrophotometric and bioassay for the activity of the drug, to evaluate its stability and to assure its potency when administered (G J Brewer et al., Arch. Neurol., 48(1):42-47 [1991]; and G J Brewer et al., Arch. Neurol., 51(6):545-554 [1994]). As noted above, TM is unstable in air, and slowly loses potency when exposed to air. This is apparently due to the exchange of oxygen molecules with the sulfur molecules, rendering TM inactive.

The results in the first patient studied can be used to illustrate several points. For the first seven days, the patient received TM only with meals (tid with meals). This produced the immediate negative copper balance one would expect from the first mechanism of action (blockade of copper absorption when given with meals). After the first seven days, TM was given between meals as well (tid with meals, and tid between meals). This led to the immediate rise in plasma copper expected from absorption of TM into the blood, and formation of a complex of copper, TM, and albumin. The copper complexed with TM and albumin is unavailable for cellular uptake, and this copper is therefore non-toxic. There is a 1:1 stochiometric relationship between molybdenum and copper in this complex. Knowing the molybdenum level in the blood, and the ceruloplasmin level (ceruloplasmin also contains copper that is non-toxic), one can calculate how much of the plasma copper is not bound to one or the other. This so-called "free copper" (non-ceruloplasmin plasma copper) is the potentially toxic copper. When reduced to zero, the plasma copper-molybdenum "gap" is closed. This took 16 days in the first patient (9 days after adding the between meal doses). Since in the brain (and in other organs), free copper is in equilibrium with the blood, decreasing the blood free copper to a low level begins the process of lowering the brain level of free (toxic) copper.

The inventors have treated initially 56 Wilson's disease patients with TM, all of whom presented with neurological or psychiatric disease, in an open label study. These patients were all diagnosed by standard criteria. These patients had a diagnostically elevated hepatic or urine copper, usually both. Some of them were treated briefly with other agents prior to this trial. Two patients had psychiatric but not neurological symptoms.

With three exceptions in the earliest part of the study, all patients received a dose of 20 mg tid with meals, or qid with three meals and a snack. Thus, the only difference between a patient receiving 120 mg and 140 mg total dose is that the former was receiving 20 mg tid, or 60 mg, with meals, and the latter was receiving 20 mg qid, or 80 mg with meals plus a snack. The rest of the total daily dose was divided up into three equal doses and given between meals.

The total daily dose was varied considerably among the patients, from a high of 410 mg to a low of 120 mg. In the end, the inventors could discern no dose-related correlation with copper variables, nor with functional variables measured either during the study or at the one and two year time point.

Zinc administration was also used in these patients. The starting time of zinc administration was varied widely and did not correlate with copper variables, outcome variables or toxicity. Early zinc therapy should theoretically help preserve liver function. In these patients, liver function returned to normal by year 1, but since these tests don't measure the extent of tissue preservation, it seems likely zinc was somewhat beneficial.

Measuring trichloracetic acid (TCA) soluble copper of the plasma is somewhat useful in assessing the impact of TM therapy on copper metabolism in Wilson's disease. Generally, a high proportion of plasma copper in these patients is TCA soluble (it averaged 56% in patients which is 27 p.g/dl). All of the non-ceruloplasmin plasma copper is TCA soluble, and a somewhat variable portion of the ceruloplasmin copper is also TCA soluble. Because the ceruloplasmin levels are usually rather low in Wilson's disease, most of the plasma copper is TCA soluble. The copper in the TM/albumin/copper complex in the blood is TCA insoluble. Thus, as therapy proceeds, the fraction of the plasma copper that is TCA soluble becomes smaller. During the late stages of TM therapy, the TCA soluble fraction of plasma copper of the patients averaged 15 pg/dl, a significant reduction from the starting value of 27. The TCA soluble fraction cannot be used as an absolute endpoint, for example attempting to reduce it to zero, because a small and somewhat variable soluble fraction is usually present due to plasma ceruloplasmin. However, the significant mean reduction from 27 to 15 p.g/dl illustrates the beneficial effect that TM therapy has on the status of the potentially toxic plasma copper in these patients. Further evidence of the desirable impact of TM therapy on copper metabolism is shown by reduction of mean urine copper values during the latter part of TM therapy, compared to baseline values.

TM has a quick and favorable impact on copper metabolism, reducing the levels of potentially toxic copper of the blood and as contemplated the rest of the body as well. The primary clinical objective in treatment of Wilson's disease is to gain control over copper toxicity while not allowing worsening of the disease or symptoms. In other words, the prime objective is to protect all neurological function that is present at the time therapy is started. This was evaluated weekly by quantitative neurological and speech exams. Methodology and the neurology rating scale system have been published (Young et al., Neurol., 36:244-249 [1986]). During the weeks of TM administration, during which copper metabolism is being controlled, neurological function, as evaluated by quantitative neurological exam is protected. Only two patients (4% of the sample) showed a change of more than 5 units, the criterion for significant worsening.

During the years following induction doses which act to initially lower endogenous copper levers, while the patients are on maintenance therapy, the brain damage previously induced by copper is at least partially repaired. This is exemplified by the partial recovery in neurological scores seen at yearly time-points in follow-up. It is clear that with the initial TM approach, long-term recovery is excellent, with most patients showing substantial neurological recovery. These excellent results are to be contrasted with results observed with penicillamine therapy. As pointed out earlier, about 50% of patients initially deteriorate on penicillamine, and that half of these, or 25% of the original sample, never recover to their pre-penicillamine baseline.

The results of TM therapy on speech during the initial 8 weeks of TM therapy were evaluated by quantitative speech exams performed as described (Brewer et al., Arch. Neurol., 53:1017-1025 [1996]). During the weeks of TM administration, during which copper metabolism is controlled, neurological function as measured by quantitative speech exams is also controlled. No patient shows significant (more than 2.0 units) reduction in scores. During the following years, while the patients are on maintenance therapy, the brain damage previously induced by copper is partially repaired. This is exemplified by the partial recovery in speech scores over years of follow-up. Long-term recovery is excellent. No patient shows significantly (more than 2.0 units) less long-term function than at the time of initiation of therapy, and most show marked improvement.

Two undesirable effects from TM therapy were observed in these patients. One is a reversible anemia/bone marrow depression, which was exhibited by seven patients. The fall in hemoglobin in all of these patients was significant, averaging 3.4%. Three of the patients showed a reduction in platelet count and four of the patients showed a reduction in white blood cell count that may have been significant. TM administration was stopped in all seven cases. Except for two of the patients, stopping TM therapy occurred late in the 56-day course of TM administration.

At the time of the anemia, these patients all had zero non-ceruloplasmin plasma copper and an extremely low TCA soluble copper. The latter averaged 2.7 in these patients, and the average value for this variable in the entire group of patients was 27 at the beginning and 15 at the height of therapy. The cause of the anemia/bone marrow depression was concluded to be bone marrow depletion of copper. Since copper is required for heme synthesis and other steps in cell proliferation, it could be expected that anemia and bone marrow effect would be the first signs of copper depletion. This result from copper depletion is a well-known phenomenon.

Thus, this undesirable response to TM is not a side effect but is, rather, due to overtreatment. It is perhaps surprising that it is possible to produce even localized bone marrow copper depletion within such a short period of time in Wilson's disease, a disease in which the body is overloaded with copper. This response to TM is unique. None of the other anticopper drugs are able to produce this effect in early therapy. Thus, this speaks to the potency of TM and the rapidity with which it can control copper levels. Its also likely that the bone marrow is especially dependent on plasma copper, and that it is the first pool that it is reduced to very low levels. At a dose of 180 mg/day or over, overtreatment occurred in 6 of 37 patients. At a dose of 150 or lower, only 1 of 13 patients exhibited overtreatment, and that occurred very late (53 days in the 56 day program).

The second undesirable effect of TM therapy in these patients is an elevation of transaminase values in four of the patients. The serum AST and ALT values were elevated. TM therapy was discontinued in one patient because of these elevations. During the period of elevated serum AST and ALT values, the urine copper increases, contrary to the general trend in other patients, where it is decreasing. These data support the concept that a hepatitis is occurring, with release of copper from damaged hepatocytes. It is not clear why this hepatitis is occurring. However, untreated Wilson's disease patients have an episodic hepatitis as part of their history. Since there is little in the way of observation of untreated patients after diagnosis, no good information exists on how often episodes of transaminase elevations occur as part of the natural history of the disease.

Alternatively, the TM in some cases may be mobilizing hepatic copper at a faster rate than it can be disposed of, in which case these patients would be classified as showing a side effect of treatment. However, the observation in copper-poisoned sheep, in which the acute hepatitis, liver necrosis, and hemolytic anemia are rapidly corrected with high doses of TM, argue against this explanation. All four of these patients were treated with 150 mg TM/day or higher. None of the patients treated with 150 mg or lower exhibited this response. No other negative effects of TM have been observed.

Claim 1 of 27 Claims

I claim:

1. A method of treating disease in a patient, wherein said disease is selected from the group consisting of pulmonary fibrosis, liver cirrhosis, and renal interstitial fibrosis, comprising administering to said patient having said disease a biologically effective amount of at least a first agent that binds or complexes copper wherein the first agent is a thiomolybdate.


____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.

 

 

[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]