Internet for Pharmaceutical and Biotech Communities
| Newsletter | Advertising |
 
 
 

  

Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 
   



 

Title:  Kits for use in detecting resistance to streptogramin A and related compounds
United States Patent: 
7,087,740
Issued: 
August 8, 2006

Inventors: 
El Solh; Ne (Vincennes, FR), Allignet; Jeanine (Nanterre, FR)
Assignee: 
Institut Pasteur (Paris, FR)
Appl. No.:  
10/253,904
Filed: 
September 25, 2002


 

Training Courses --Pharm/Biotech/etc.


Abstract

A kit for use in detecting a bacterium having resistance to streptogramin A and related compounds is provided. A kit for use in detecting a bacterium harboring at least one polynucleotide encoding VgaB in a biological sample is also provided. The kits comprise at least one oligonucleotide probe and at least one reagent for performing a nucleic acid hybridization reaction.

DETAILED DESCRIPTION OF THE INVENTION

It has now been determined that bacteria from the Staphylococcus genus carry a vgaB gene, which encodes a putative ATP-binding protein that confers resistance to streptogramin A and structurally similar compounds. It has also now been determined that bacteria from the Staphylococcus genus carry a vgbB gene, which encodes a lactonase that confers resistance to streptogramin B and structurally similar compounds, and a vatC gene, which encodes an acetyltransferase that confers resistance to streptogramin A and structurally similar compounds.

Novel polynucleotides corresponding to the vgaB, vgbB, and vatC genes from various strains of Staphylococcus have been isolated and sequenced, and it has been surprisingly demonstrated that these new polynucleotides make it possible to design oligonucleotide probes or primers. These polynucleotides include the following: a) SEQ ID NO: 1, b) SEQ ID NO: 2, c) SEQ ID NO: 3, d) SEQ ID NO: 11, e) SEQ ID NO: 12, f) SEQ ID NO: 13, and g) SEQ ID NO: 14.

This invention provides specific pairs of oligonucleotide primers or probes that hybridize specifically, under stringent hybridization conditions as defined hereinafter, to the nucleic acid (RNA or DNA) from a particular strain of the Staphylococcus genus. These oligonucleotide primers include the following:

TABLE-US-00001 a) Oligo I 5'-AAGTCGACTGACAATATGAGTGGTGG-3' (SEQ ID NO:17), and Oligo II 5'-CTGCAGATGCCTCAACAGCATCGATATCC-3' (SEQ ID NO:18); b) Oligo III 5'-ATGAATTCGCAAATCAGCAAGG-3' (SEQ ID NO:19), and Oligo IV 5'-TCGTCTCGAGCTCTAGGTCC-3' (SEQ ID NO:20); and c) Oligo V 5'-CAGCAGTCTAGATCAGAGTGG-3' (SEQ ID NO:21), and Oligo VI 5'-CATACGGATCCACCTTTTCC-3' (SEQ ID NO:22).

In a specific embodiment of the present invention, the purified polynucleotides useful for detecting Staphylococcal strains can be used in combination in order to detect bacteria belonging to Staphylococci in a biological sample Thus, the present invention also provides detection methods and kits comprising combinations of the purified polynucleotides according to the invention The purified oligonucleotides of the invention are also useful as primers for use in amplification reactions or as nucleic acid probes.

By "polynucleotides" according to the invention is meant the sequences referred to as SEQ ID NOs: 1, 2, 3, OR 11, 12, 13, 14 and the complementary sequences and/or the sequences of polynucleotides which hybridize to the referred sequences in high stringent conditions and which are used for detecting staphylococcal strains carrying a gene encoding resistance to streptogramin A or to streptogramin B.

By "active molecule" according to the invention is meant a molecule capable of inhibiting the activity of the purified polypeptide as defined in the present invention or capable of inhibiting the bacterial culture of staphylococcal strains.

Thus, the polynucleotides of SEQ ID NOs: 1 3 and 11 14 and their fragments can be used to select nucleotide primers notably for an amplification reaction, such as the amplification reactions further described.

PCR is described in the U.S. Pat. No. 4,683,202 granted to Cetus Corp. The amplified fragments may be identified by agarose or polyacrylamide gel electrophoresis, or by a capillary electrophoresis, or alternatively by a chromatography technique (gel filtration, hydrophobic chromatography, or ion exchange chromatography). The specificity of the amplification can be ensured by a molecular hybridization using as nucleic probes the polynucleotides of SEQ ID NOs: 1 3 and 11 14 and their fragments, oligonucleotides that are complementary to these polynucleotides or fragments thereof, or their amplification products themselves.

Amplified nucleotide fragments are useful as probes in hybridization reactions in order to detect the presence of one polynucleotide according to the present invention or in order to detect the presence of a bacteria of Staphylococcal strain carrying genes encoding resistance to streptogramin A or streptogramin B, in a biological sample. This invention also provides the amplified nucleic acid fragments ("amplicons") defined herein above. These probes and amplicons can be radioactively or non-radioactively labeled, using for example enzymes or fluorescent compounds.

Preferred nucleic acid fragments that can serve as primers according to the present invention are the following: polynucleotides of sequence SEQ ID NOs: 1 3 and 11 14; and polynucleotides having a length from 20 to 30 consecutive nucleotides from a polynucleotide selected from the group consisting of polynucleotides of sequences SEQ ID NO: 11 to SEQ ID NO: 14 or from 20 to 40 consecutive nucleotides from a polynucleotide of SEQ ID NO: 3. The primers can also be used as oligonucleotide probes to specifically detect a polynucleotide according to the invention.

Other techniques related to nucleic acid amplification can also be used and are generally preferred to the PCR technique. The Strand Displacement Amplification (SDA) technique (Walker et al., 1992) is an isothermal amplification technique based on the ability of a restriction enzyme to cleave one of the strands at a recognition site (which is under a hemiphosphorothioate form), and on the property of a DNA polymerase to initiate the synthesis of a new strand from the 3' OH end generated by the restriction enzyme and on the property of this DNA polymerase to displace the previously synthesized strand being localized downstream.

The SDA amplification technique is more easily performed than PCR (a single thermostated water bath device is necessary), and is faster than the other amplification methods. Thus, the present invention also comprises using the nucleic acid fragments according to the invention (primers) in a method of DNA or RNA amplification according to the SDA technique. The polynucleotides of SEQ ID NOs: 1 3 and 11 14 and their fragments, especially the primers according to the invention, are useful as technical means for performing different target nucleic acid amplification methods such as: TAS (Transcription-based Amplification System), described by Kwoh et al. in 1989; SR (Self-Sustained Sequence Replication), described by Guatelli et al. in 1990, NASBA (Nucleic acid Sequence Based Amplification), described by Kievitis et al. in 1991; and TMA (Transcription Mediated Amplification).

The polynucleotides of SEQ ID NOs: 1 3 and 11 14 and their fragments, especially the primers according to the invention, are also useful as technical means for performing methods for amplification or modification of a nucleic acid used as a probe, such as: LCR (Ligase Chain Reaction), described by Landegren et al. in 1985 and improved by Barany et al. in 1991, who employ a thermostable ligase; RCR (Repair Chain Reaction), described by Segev et al. in 1992; CPR (Cycling Probe Reaction), described by Duck et al. in 1990; and Q-beta replicase reaction, described by Miele et al. in 1983 and improved by Chu et al. in 1986, Lizardi et al. in 1988, and by Burg et al. and Stone et al. in 1996.

When the target polynucleotide to be detected is RNA, for example mRNA, a reverse transcriptase enzyme can be used before the amplification reaction in order to obtain a cDNA from the RNA contained in the biological sample. The generated cDNA can be subsequently used as the nucleic acid target for the primers or the probes used in an amplification process or a detection process according to the present invention.

Nucleic probes according to the present invention are specific to detect a polynucleotide of the invention. By "specific probes" according to the invention is meant any oligonucleotide that hybridizes with one polynucleotide of SEQ ID NOs: 1 3 and 11 14 and which does not hybridize with unrelated sequences. Preferred oligonucleotide probes according to the invention are oligonucleotides I VI.

In a specific embodiment, the purified polynucleotides according to the present invention encompass polynucleotides having at least 80% homology in their nucleic acid sequences with polynucleotides of SEQ ID NO: 11 to SEQ ID NO: 14, at least 70% identity with SEQ ID NO: 1 to 3. By percentage of nucleotide homology according to the present invention is intended a percentage of identity between the corresponding bases of two homologous polynucleotides, this percentage of identity being purely statistical and the differences between two homologous polynucleotides being located at random and on the whole length of said polynucleotides.

The oligonucleotide probes according to the present invention hybridize specifically with a DNA or RNA molecule comprising all or part of one polynucleotide among SEQ ID NOs: 1 3 and 11 14 under stringent conditions. As an illustrative embodiment, the stringent hybridization conditions used in order to specifically detect a polynucleotide according to the present invention are advantageously the following: Prehybridization and hybridization are performed at 68.degree. C. in a mixture containing: 5.times.SSPE (1.times.SSPE is 0.3 M NaCl, 30 mM tri-sodium citrate 5.times. Denhardt's solution 0.5% (w/v) sodium dodecyl sulfate (SDS); and 100 .mu.g ml.sup.-1 salmon sperm DNA The washings are performed as follows: Two washings at laboratory temperature for 10 min. in the presence of 2.times.SSPE and 0.1% SDS; One washing at 68.degree. C. for 15 min. in the presence of 1.times.SSPE, 0.1% SDS; and One washing at 68.degree. C. for 15 min in the presence of 0.1.times.SSPE and 0.1% SDS.

The non-labeled polynucleotides or oligonucleotides of the invention can be directly used as probes. Nevertheless, the polynucleotides or oligonucleotides are generally labeled with a radioactive element (.sup.32P, .sup.35S, .sup.3H, .sup.125I) or by a non-isotopic molecule (for example, biotin, acetylaminofluorene, digoxigenin, 5-bromodesoxyuridin, fluorescein) in order to generate probes that are useful for numerous applications. Examples of non-radioactive labeling of nucleic acid fragments are described in the French Patent No FR 78 10975 or by Urdea et al. or Sanchez-Pescador et al. 1989. WO 98/59058 PCT/IB98/00962

Other labeling techniques can also be used, such as those described in the French patents 2 422 956 and 2 518 755. The hybridization step may be performed in different ways (Matthews et al. 1988). A general method comprises immobilizing the nucleic acid that has been extracted from the biological sample on a substrate (nitrocellulose, nylon, polystyrene) and then incubating, in defined conditions, the target nucleic acid with the probe. Subsequent to the hybridization step, the excess amount of the specific probe is discarded, and the hybrid molecules formed are detected by an appropriate method (radioactivity, fluorescence, or enzyme activity measurement).

Advantageously, the probes according to the present invention can have structural characteristics such that they allow signal amplification, such structural characteristics being, for example, branched DNA probes as those described by Urdea et al. in 1991 or in the European Patent No. 0 225 807 (Chiron).

In another advantageous embodiment of the present invention, the probes described herein can be used as "capture probes", and are for this purpose immobilized on a substrate in order to capture the target nucleic acid contained in a biological sample.

The captured target nucleic acid is subsequently detected with a second probe, which recognizes a sequence of the target nucleic acid that is different from the sequence recognized by the capture probe.

The oligonucleotide fragments useful as probes or primers according to the present invention can be prepared by cleavage of the polynucleotides of SEQ ID NOs: 1 3 and 11 14 by restriction enzymes, as described in Sambrook et al. in 1989. Another appropriate preparation process of the nucleic acids of the invention containing at most 200 nucleotides (or 200 bp if these molecules are double-stranded) comprises the following steps: synthesizing DNA using the automated method of beta-cyanethylphosphoramidite described in 1986; cloning the thus obtained nucleic acids in an appropriate vector; and purifying the nucleic acid by hybridizing to an appropriate probe according to the present invention.

A chemical method for producing the nucleic acids according to the invention, which have a length of more than 200 nucleotides (or 200 bp if these molecules are double-stranded), comprises the following steps: Assembling the chemically synthesized oligonucleotides having different restriction sites at each end; cloning the thus obtained nucleic acids in an appropriate vector; and purifying the nucleic acid by hybridizing to an appropriate probe according to the present invention.

The oligonucleotide probes according to the present invention can also be used in a detection device comprising a matrix library of probes immobilized on a substrate, the sequence of each probe of a given length being localized in a shift of one or several bases, one from the other, each probe of the matrix library thus being complementary to a distinct sequence of the target nucleic acid. Optionally, the substrate of the matrix can be a material able to act as an electron donor, the detection of the matrix positions in which hybridization has occurred being subsequently determined by an electronic device. Such matrix libraries of probes and methods of specific detection of a target nucleic acid are described in the European patent application No. 0 713 016, or PCT Application No. WO 95 33846, or also PCT Application No. WO 95 11995 (Affymax Technologies), PCT Application No. WO 97 02357 (Affymetrix Inc.), and also in U.S. Pat. No. 5,202,231 (Drmanac), said patents and patent applications being herein incorporated by reference.

The present invention also pertains to a family of recombinant plasmids containing at least a nucleic acid according to the invention According to an advantageous embodiment, a recombinant plasmid comprises a polynucleotide of SEQ ID NOs: 1 3 and 11 14 or one nucleic fragment thereof. More specifically, the following plasmids are part of the invention: pIP163 and pIP1714.

The present invention is also directed to the full length coding sequences of the vgaB, vgbB, and vatC genes from Staphylococci that are available using the purified polynucleotides according to the present invention, as well as to the polypeptide enzymes encoded by these full length coding sequences. In a specific embodiment of the present invention, the full length coding sequences of the vgaB, vgbB, and vatC genes are isolated from a plasmid or cosmid library of the genome of Staphylococci that have been screened with the oligonucleotide probes according to the present invention. The selected positive plasmid or cosmid clones hybridizing with the oligonucleotide probes of the invention are then sequenced in order to characterize the corresponding full length coding sequence, and the DNA insert of interest is then cloned in an expression vector in order to produce the corresponding ATP binding motif conferring resistance to streptogramin A and related compounds, acetyltransferase conferring resistance to streptogramin A and related compounds, or lactonase conferring resistance to streptogramin B and related compounds.

A suitable vector for the expression in bacteria and in particular in E. Coli, is the pQE-30 vector (QIAexpress) that allows the production of a recombinant protein containing a 6xHis affinity tag The 6.times.His tag is placed at the C-terminus of the recombinant polypeptide ATP binding motif conferring resistance to streptogramin A and related compounds, acetyltransferase conferring resistance to streptogramin A and related compounds or lactonase conferring resistance to streptogramin B and related compounds, which allows a subsequent efficient purification of the recombinant polypeptide ATP binding motif conferring resistance to streptogramin A and related compounds, acetyltransferase conferring resistance to streptogramin A and related compounds, or lactonase conferring resistance to streptogramin B and related compounds by passage onto a nickel or copper affinity chromatography column The nickel chromatography column can contain the Ni-NTA resin (Porath et al. 1975)

The polypeptides according to the invention can also be prepared by conventional methods of chemical synthesis, either in a homogenous solution or in solid phase. As an illustrative embodiment of such chemical polypeptide synthesis techniques the homogenous solution technique described by Houbenweyl in 1974 may be cited.

The polypeptides according to the invention can be characterized by binding onto an immunoaffinity chromatography column on which polyclonal or monoclonal antibodies directed to a polypeptide among the ATP binding motif conferring resistance to streptogramin A and related compounds, acetyltransferase conferring resistance to streptogramin A and related compounds, or lactonase conferring resistance to streptogramin B and related compounds of the invention have previously been immobilized.

Another object of the present invention comprises a polypeptide produced by the genetic engineering techniques or a polypeptide synthesized chemically as above described.

The polypeptide ATP binding motif conferring resistance to streptogramin A and related compounds, acetyltransferase conferring resistance to streptogramin A and related compounds, or lactonase conferring resistance to streptogramin B and related compounds according to the present invention are useful for the preparation of polygonal or monoclonal antibodies that recognize the polypeptides or fragments thereof. The monoclonal antibodies can be prepared from hybridomas according to the technique described by Kobler and Milstein in 1975. The polyclonal antibodies can be prepared by immunization of a mammal, especially a mouse or a rabbit, with a polypeptide according to the invention that is combined with an adjuvant, and then by purifying specific antibodies contained in the serum of the immunized animal on a affinity chromatography column on which has previously been immobilized the polypeptide that has been used as the antigen.

Consequently, the invention is also directed to a method for detecting specifically the presence of a polypeptide according to the invention in a biological sample. The method comprises: a) bringing into contact the biological sample with an antibody according to the invention; and b) detecting antigen-antibody complex formed.

Also part of the invention is a diagnostic kit for in vitro detecting the presence of a polypeptide according to the present invention in a biological sample. The kit comprises: a polyclonal or monoclonal antibody as described above, optionally labeled; and a reagent allowing the detection of the antigen-antibody complexes formed, wherein the reagent carries optionally a label, or being able to be recognized itself by a labeled reagent, more particularly in the case when the above-mentioned monoclonal or polyclonal antibody is not labeled by itself.

Indeed, the monoclonal or polyclonal antibodies according to the present invention are useful as detection means in order to identify or characterize a Staphylococcal strain carrying genes encoding resistance to streptogramin A or streptogramin B.

The invention also pertains to:

A purified polypeptide or a peptide fragment having at least 10 amino acids, which is recognized by antibodies directed against a polynucleotide sequence conferring resistance to streptogramin and related compounds, corresponding to a polynucleotide sequence according to the invention.

A polynucleotide comprising the full length coding sequence of a Staphylococcus streptogramin A and/or B resistant gene containing a polynucleotide sequence according to the invention.

A monoclonal or polyclonal antibody directed against a polypeptide or a peptide fragment encoded by the polynucleotide sequences according to the invention.

A method of detecting the presence of bacterium harboring the polynucleotide sequences according to the invention in a biological sample comprising: a) contacting bacterial DNA of the biological sample with a primer or a probe according to the invention, which hybridizes with a nucleotide sequence encoding resistance to streptogramins; b) amplifying the nucleotide sequence using said primer or said probe; and c) detecting the hybridized complex formed between said primer or probe with the DNA.

A kit for detecting the presence of bacterium having resistance to streptogramin A and/or streptogramin B and harboring the polynucleotide sequences according to the invention in a biological sample, said kit comprising: a) a polynucleotide probe according to the invention; and b) reagents necessary to perform a nucleic acid hybridization reaction.

A kit for detecting the presence of bacterium having resistance to streptogramin A and harboring the polynucleotide sequences according to the invention in a biological sample, said kit comprising: a) a polynucleotide probe according to the invention; and b) reagents necessary to perform a nucleic acid hybridization reaction.

A method of screening active antibiotics for the treatment of the infections due to Gram-positive bacteria, comprising the steps of: a) bringing into contact a Gram-positive bacteria having a resistance to streptogramin A or streptogramin B and related compounds and containing the polynucleotide sequences according to the invention with the antibiotic; and b) measuring an activity of the antibiotic on the bacteria having a resistance to streptogramins and related compounds.

A method of screening for active synthetic molecules capable of penetrating into a bacteria of the family of staphylococci, wherein the inhibiting activity of these molecules is tested on at least a polypeptide encoded by the polynucleotide sequences according to the invention comprising the steps of: a) contacting a sample of said active molecules with the bacteria; b) testing the capacity of the active molecules to penetrate into the bacteria and the capacity of inhibiting a bacterial culture at various concentration of the molecules; and c) choosing the active molecule that provides an inhibitory effect of at least 80% on the bacterial culture compared to an untreated culture.

An in vitro method of screening for active molecules capable of inhibiting a polypeptide encoded by the polynucleotide sequences according to the invention, wherein the inhibiting activity of these molecules is tested on at least said polypeptide, said method comprising the steps of: a) extracting a purified polypeptide according to the invention; b) contacting the active molecules with said purified polypeptide; c) testing the capacity of the active molecules, at various concentrations, to inhibit the activity of the purified polypeptide; and d) choosing the active molecule that provides an inhibitory effect of at least 80% on the activity of the said purified polypeptide.

A composition of a polynucleotide sequence encoding resistance to streptogramins and related compounds, or inducing resistance in Gram-positive bacteria, wherein said composition comprises a nucleotide sequence corresponding to the resistance phenotype of the plasmid pIP1633 deposited with the C.N.C.M. under the Accession No. I-1768 and of the plasmid pIP1680 deposited with the C.N.C.M. under the Accession No. I-1767 and of the plasmid pIP1714 deposited with the C.N.C.M. under the number I-1877 on Jun. 18, 1997.

A method of detecting the presence of bacterium harboring the polynucleotide sequences according to the invention in a biological sample, said method comprising the steps of. a) contacting said sample with an antibody according to the invention that recognizes a polypeptide encoded by said polynucleotide sequences; and b) detecting said complex.

A diagnostic kit for iii vitro detecting the presence of bacterium harboring the polynucleotide sequences according to the invention in a biological sample, said kit comprising: a) a predetermined quantity of monoclonal or polyclonal antibodies according to the invention; b) reagents necessary to perform an immunological reaction between the antibodies and a polypeptide encoded by said polynucleotide sequences; and c) reagents necessary for detecting said complex between the antibodies and the polypeptide encoded by said polynucleotide sequences.

The inhibiting activity of the molecules can be readily evaluated by one skilled in the art. For example, the inhibiting activity of Vga B can be tested by detecting its ATP hydrolysis as described in J. I. Ross et al. (1990), Mol. Microbiol. 4(7):1207 1214 regarding the rate evaluation of the active efflux of antibiotics from a cell. Ross et al. use a different gene, but their gene product functions as a drug efflux pump in the same way as Vga B does.

The inhibiting activity of Vat C can be tested by visualizing the acetylation reaction as described in Allignet et al. (1993) regarding the mechanism of inactivation of A-type compounds conferred by plasmids pIP680 and pIP1156 by thick layer chromatography and NMR.

The inhibiting activity of Vgb B can be tested by detecting the degradation of streptogramin B or a related compound by a microbiological test as described in Allignet et al. (1988)

Plasmids containing the polynucleotides from Staphylococci, which confer streptogramin A and/or B resistance, are referred to herein by the following accession numbers (see Original Patent) and they have been inserted into vectors which have been deposited at the Collection Nationale de Cultures de Microorganismes ("C.N.C.M.") Institut Pasteur, 28, rue du Docteur Roux, F-75724 Paris Cedex 15, France on Jun. 18, 1997, and Aug. 7, 1996, respectively.
 


Claim 1 of 12 Claims

1. A kit for use in detecting a bacterium having resistance to streptogramin A and related compounds, said kit comprising: at least one oligonucleotide probe that hybridizes specifically to a bacterium-derived polynucleotide that encodes resistance to streptogramin A and related compounds, wherein the at least one oligonucleotide probe comprises SEQ ID NO:1 or the complete complement of SEQ ID NO:1; and at least one reagent for performing a nucleic acid hybridization reaction.

____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.

 

 

     
[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]