Internet for Pharmaceutical and Biotech Communities
| Newsletter | Post Jobs | Advertising |
 
 
 

  

Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 
   



 

Title:  Method and composition for supplementation of nutritional deficiencies in renal patients
United States Patent: 
6,995,166
Issued: 
February 7, 2006
Inventors: 
Giordano; John A. (West Orange, NJ); Balzer; Charles (Lavalette, NJ)
Assignee: 
Everett Laboratories, Inc. (West Orange, NJ)
Appl. No.:  671283
Filed: 
September 27, 2000


 

Outsourcing Guide


Abstract

The present invention relates to compositions and methods for treating the nutritional deficiencies observed in patients suffering from renal disease and associated disorders. Specifically, the method involves administering to a renal patient a composition comprising vitamin C, vitamin E, the B-complex vitamins, chromium, selenium, and zinc.

SUMMARY OF THE INVENTION

The present invention provides nutritional compositions and methods of using said compositions for treating patients with renal disease. Specifically, the present invention discloses novel compositions of vitamins and minerals in an amount that can be used to supplement the nutritional deficiencies observed in patients afflicted with renal disease, renal insufficiency, or end-stage renal disease. The compositions of the present invention can also be used as nutritional supplements for patients undergoing dialysis therapy or for patients on a restricted diet. In addition, the compositions can be used to treat the nutritional deficiencies of any disease state that results in increased oxidative stress, elevated cholesterol levels, or elevated homocysteine levels.

The compositions of the present invention comprise numerous vitamins and minerals that will improve the nutritional state of a patient. The vitamins of the present invention preferably comprise vitamin C, vitamin E, vitamin B1, vitamin B2, vitamin B3, vitamin B5, vitamin B6, vitamin B12, biotin, and folic acid. The minerals of the present invention preferably comprise chromium, selenium, and zinc.

In a preferred embodiment, the composition comprises about 45 mg to 55 mg vitamin C, 31.5 IU to 38.5 IU vitamin E, 2.7 mg to 3.3 mg thiamine (vitamin B1), 1.8 mg to 2.25 mg riboflavin (vitamin B2), 18 mg to 22 mg niacin (vitamin B3), 9 mg to 11 mg pantothenic acid (vitamin B5), 13.5 mg to 16.5 mg pyridoxine (vitamin B6), 10.8 μg to 13.2 μg cyanocobalamin (vitamin B12), 270 μg to 330 μg biotin, 2.25 mg to 2.75 mg folic acid, 180 μg to 220 μg chromium, 63 μg to 77 μg selenium, and 18 mg to 22 mg zinc.

In a further preferred embodiment of the present invention, the composition comprises 50 mg of vitamin C, 35 IU vitamin E, 3 mg of thiamine, 2 mg of riboflavin, 20 mg of niacin, 10 mg of pantothenic acid, 15 mg of pyridoxine, 12 μg cyanocobalamin, 300 μg of biotin, 2.5 mg of folic acid, 200 μg of chromium, 70 μg of selenium, and 20 mg of zinc.

The present invention also relates to methods for supplementing the nutritional deficiencies in a patient comprising the step of administering to said patient a composition comprising vitamin C, vitamin E, B-complex vitamins, chromium, selenium, and zinc. The compositions used in the methods of the present invention may further comprise a pharmaceutically acceptable carrier. In a preferred embodiment, the compositions of the present invention are administered to said patient orally and preferably on a daily basis.

In another embodiment of the compositions of the present invention, vitamin C comprises ascorbic acid, vitamin E comprises d-alpha tocopheryl succinate, pantothenic acid comprises d-calcium pantothenate, niacin comprises niacinamide, selenium comprises L-selenomethionine, zinc comprises L-Optizine ZML-200 InterHealth™, chromium consists of chromium chloride, chromium picolinate, and chromium tripicolinate, and B-complex is one or more vitamins selected from the group consisting of pantothenic acid, cyanocobalamin, niacin, pyridoxine, riboflavin, thiamine, folic acid, and biotin.

DETAILED DESCRIPTION OF THE INVENTION

The nutritional therapy of individuals with renal disease requires a unique formulation due to the multiple metabolic and biochemical changes, as well as dietary restrictions. The prescribed diet restrictions usually result in decreased consumption of vital nutrients such as vitamin C, vitamin E, the B-complex vitamins, and zinc. Rocco et al., 7 J. RENAL NUTR. 17-24 (1997). In addition, patients with end-stage renal disease are often in a uremic state which increases oxidative stress and free radical production, affects the appetite, and alters the body's ability to utilize nutrients. Tetta et al., 17 BLOOD PURIF. 118-126 (1999). The dialysis process may also result in a depletion of essential nutrients. Stein et al., 3 BLOOD PURIF. 52-62 (1985). The novel compositions and related methods of the present invention comprise a unique mixture of vitamins and minerals that are useful as nutritional supplements for treating patients suffering from renal disease.

The term "renal disease" is a generic expression encompassing an array of disorders that afflict the kidneys. The term "renal patient" includes patients suffering from renal disease. In general, renal diseases are categorized according to the affected morphologic component: glomerulus, tubules, and blood vessels. The glomerulus is a network of branching and anastomosing capillaries that filters proteins, toxins, and other substances from the blood. A number of factors may lead to injury to glomeruli including secondary affects from immunologic, vascular, and metabolic diseases. Diseases of the glomerulus include, but are not limited to, glomerulonephritis, nephrotic syndrome, lipoid nephrosis, glomerulosclerosis, Berger disease, and hereditary nephritis. ROBBINS PATHOLOGIC BASIS OF DISEASE 942 (Cotran et al., 6th ed. 1999).

The tubules of the kidney reabsorb components from the glomerulus filtrate into the blood. The epithelial cells of the tubules are particularly sensitive to ischemia and toxins and thus, predispose the tubules to injury. Disease conditions of the tubules include, but are not limited to, acute tubular necrosis, tubulointerstitial nephritis, pyelonephritis, urate nephropathy, and nephrocalcinosis. Id., at 968-980.

The richly vascularized kidney receives approximately 25% of the cardiac output and systemic vascular diseases such as vasculitis and hypertension may have secondary effects on renal blood vessels. Other diseases of the renal blood vessels include, but are not limited to, benign nephrosclerosis, renal artery stenosis, thrombotic microangiopathies, hemolytic-uremic syndrome, and sickle cell disease nephropathy. Id., at 981-987. In addition, tumors such as oncocytoma and renal cell carcinoma may also impair renal function. Id., at 991-994. Regardless of the origin, the numerous diseases described above eventually culminate in chronic renal disease and ultimately end-stage renal disease.

Reduced levels of serum vitamin C have been observed in chronic renal failure patients. These reduced levels were most likely due to a low-potassium diet and decreased food intake. Marumo et al., 9 INT. J. ARTIF. ORGANS 17-24 (1986). The low-potassium renal diet generally restricts fruit and vegetables which are abundant in potassium and vitamin C. The major biochemical role of vitamin C is as a cosubstrate in metal catalyzed hydroxylations and it has antioxidant properties interacting directly with superoxide hydroxyl radicals and singlet oxygen. In addition, vitamin C provides antioxidant protection for folate and vitamin E. RECOMMENDED DIETARY ALLOWANCES 115 (National Research Council, 10th ed., 1989) (hereinafter "RDA"). One embodiment of the compositions of the present invention provides a supplemental dose of vitamin C, preferably in the amount of about 45 to about 55 mg.

Vitamin E is an antioxidant found in biological membranes where it protects the phospholipid membrane from oxidative stress. RDA, at 99-101. It is also an antiatherogenic agent and studies have demonstrated a reduced risk of coronary heart disease with increased intake of vitamin E. Stampfer et al., 328 N. ENGL. J. MED. 1444-1449 (1993). Decreased levels of vitamin E have been observed in chronic renal failure patients and in patients undergoing dialysis. Taccone-Gallucci et al., 27 CLIN. NEPHROL. 238-241 (1987); Ito et al., 217 JAMA 699 (1971). In addition, it has been demonstrated that the typical renal diet is deficient in vitamin E. Ono, 40 NEPHRON 440-445 (1985). Furthermore, atherosclerotic cardiovascular disease is a leading cause of death in patients with end-stage renal disease. Maiorca, et al., 43 KIDNEY INT. S4-S10 (1993). Thus, one embodiment of the compositions of the present invention provides a supplemental dose of vitamin E, preferably in the amount of about 31.5 to about 38.5 IU.

Thiamine (vitamin B1) is a coenzyme for the oxidative decarboxylation of α-ketoacids and for transketolase which is a component of the pentose phosphate pathway. The activity of thiamine is inhibited by folate deficiency and malnutrition. RDA, at 123. Chronic renal failure patients placed on a low protein diet exhibited a thiamine deficiency. Porrini et al., 59 INT. J. VITAM. NUTR. RES. 304-308 (1989). In addition, erythrocyte transketolase activity was impaired in dialysis patients. Descombes et al., 43 KIDNEY INT. 1319-1328 (1993). Hence, to correct for any potential thiamine deficiency in renal patients, one embodiment of the compositions of the present invention may also comprise thiamine, preferably in the amount ranging from about 2.7 to about 3.3 mg.

Riboflavin (vitamin B2) is a component of two flavin coenzymes, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These flavoenzymes are involved in a number of oxidation-reduction reactions including the conversion of pyridoxine and niacin. RDA, at 132. Renal patients prescribed a low protein diet demonstrated evidence of riboflavin deficiency. Porrini et al., 59 INT. J. VITAM. NUTR. RES. 304-308 (1989); Stein et al., 3 BLOOD PURIF. 52-62 (1985). Corneal vascularization and dermatitis has been noted in patients exhibiting riboflavin deficiency. HANDBOOK, at 116. Thus, one embodiment of the compositions of the present invention may comprise riboflavin, preferably in the amount ranging from about 1.8 to about 2.2 mg.

Nicotinamide adenine dinucleotide (NAD) and NAD phosphate (NADP) are active coenzymes of niacin (vitamin B3). These coenzymes are involved in numerous enzymatic reactions such as glycolysis, fatty acid metabolism, and steroid synthesis. Niacin is also required for the synthesis of pyroxidine, riboflavin, and folic acid. RDA, at 137. Administration of niacin may also produce a reduction in total cholesterol, LDL, and VLDL levels and an increase in HDL cholesterol. Henkin et al., 91 AM. J. MED. 239-246 (1991). A niacin deficiency was noted in dialysis patients and reduced amounts of niacin have been demonstrated in a low protein renal diet. DeBari et al., 39 AM. J. CLIN. NUTR. 410-415 (1984); Mackenzie et al., 5 PROC. EUR. DIAL. TRANSPLANT. ASSOC. 172-178 (1968). Thus, to maintain appropriate niacin levels in renal patients, one embodiment of the compositions of the present invention may comprise niacin, preferably in the amount ranging from about 18 to about 22 mg.

Pantothenic acid (vitamin B5) is a component of the coenzyme A macromolecule which is required for the synthesis of fatty acids, cholesterol, steroid hormones, and neurotransmitters. The coenzyme A complex also has a major role in the acetylation and acylation of numerous proteins. RDA, at 169. Low protein diets as typically prescribed for renal patients provide a minimum amount of pantothenic acid. In addition, a decrease in pantothenic acid plasma levels was observed in dialysis patients. Mackenzie et al. 5 PROC. EUR. DIAL. TRANSPLANT. ASSOC. 172-178 (1968). Therefore, to minimize a deficiency of pantothenic acid in renal patients, one embodiment of the compositions of the present invention may comprise pantothenic acid, preferably in the amount ranging from about 9 to about 11 mg.

The active forms of pyridoxine (vitamin B6), pyridoxal-5′-phosphate (PLP) and pyridoxamine-5′-phosphate, are coenzymes for numerous enzymes and as such, are essential for gluconeogenesis, niacin formation, and erythrocyte metabolism. RDA at, 142-143. A high incidence of pyridoxine deficiency has been noted in both adult and pediatric chronic renal failure patients, as well as patients undergoing dialysis. Stein et al., 3 BLOOD PURIF. 52-62 (1985); Stockberger et al., 7 NUTR. RES. 1021-1030 (1987); Descombes et al., 43 KIDNEY INT. 1319-1328 (1993). Low protein diets generally have minimal amounts of pyridoxine. Kopple et al., 19 KIDNEY INT. 694-704 (1981). A deficiency in pyridoxine may be attributed to the suppressed immune function observed in chronic renal patients, as well as the increased plasma and tissue oxalate concentrations in renal failure. Dobblestein et al., 5 KIDNEY INT. 233-239 (1974); Morgan et al., 46 NEPHRON 253-257 (1987).

In addition, it has been suggested that pyridoxine deficiency plays a role in homocysteinemia which has been observed in renal patients. Pyridoxine is a coenzyme for both cystathionine synthase and cystathionase, enzymes that catalyze the formation of cysteine from methionine. Homocysteine is an intermediate in this process and elevated levels of plasma homocysteine are recognized as a risk factor for vascular disease. Robinson et al., 94 CIRCULATION 2743-2748 (1996). However, it has been proposed that administration of pyridoxine may reduce the levels of homocysteine. Bostom et al., 49 KIDNEY INT. 147-152 (1996). Hence, one embodiment of the compositions of the present invention may comprise pyridoxine, preferably in the amount ranging from about 13.5 to about 16.5 mg.

Cyanocobalamin (vitamin B12) is the pharmaceutical form of cobalamin which can be converted to the active coenzymes, methylcobalamin and 5′-deoxyadenosylcobalamin. These coenzymes are necessary for folic acid metabolism, conversion of coenzyme A, and myelin synthesis. For example, methylcobalamin catalyzes the demethylation of a folate cofactor which is involved in DNA synthesis. A lack of demethylation may result in folic acid deficiency. RDA, at 159-160. A deficiency of vitamin B12 was observed in chronic renal failure patients and dialysis patients. In addition, slow nerve conduction velocities were also noted in dialysis patients. Rostand, 29 AM. J. CLIN. RES. 691-697 (1976). Based on these observations, vitamin B12 supplementation may be appropriate as a means to compensate for any deficiency. Furthermore, since vitamin B12 has a role in folic acid metabolism, supplementation may be effective in managing homocysteine levels in renal patients. Thus, the novel compositions of the present invention may comprise cyanocobalamin preferably in the amount ranging from about 10.8 to about 13.2 μg.

Biotin acts a coenzyme for a number of carboxylases and thus, has an important role in gluconeogenesis, fatty acid metabolism, and amino acid metabolism. RDA, at 166. It has been shown that biotin inhibits the effects of uremic toxins on tubulin polymerizaton. Braguer et al., 57 NEPHRON 192-196 (1991). Furthermore, there is some evidence to suggest that chronic renal failure patients and dialysis patients are at a risk for the development of a biotin deficiency. Mackenzie et al., 5 PROC. EUR. DIAL. TRANSPLANT. ASSOC. 172-178 (1968). In several dialysis patients diagnosed with uremic encephalopathy and neuropathy, symptoms of these disorders were alleviated by administration of biotin. Yatzidis et al., 305 N. ENGL. J. MED. 764 (1981). Thus, to maintain appropriate biotin levels in renal patients, one embodiment of the compositions of the present invention may comprise biotin preferably in an amount ranging from about 270 to about 330 μg.

Folic acid in its active form, tetrahydrofolate, is a coenzyme that is involved in the transfer of methyl groups and it plays a role in DNA synthesis, purine synthesis, and amino acid synthesis, such as the conversion of glycine to serine and the transformation of homocysteine to methionine. The activation of folic acid requires a vitamin B12-dependent transmethylation and vitamin B12 is also necessary for folic acid delivery to tissues. RDA, at 150. The metabolism of folic acid is altered by uremia and the absorption of tetrahydrofolate is impaired in chronic renal failure patients. Said et al., 6 ACTA VITAMINOL. ENZYMOL. 339-346 (1984). Furthermore, the diet generally prescribed for renal patients tends to be low in folic acid content and medications used by chronic renal failure patients may also inhibit the activity of folic acid. Stein et al., 3 BLOOD PURIF. 52-62 (1985); Cunningham et al., 282 BR. MED. J. 1582 (1981). The high incidence of homocysteinemia observed in chronic renal failure patients and the related risk of development of atherosclerosis suggest that folic acid supplementation may provide an effective method for managing this condition and also provide a cardio-protective effect. Robinson et al., 94 CIRCULATION 2743-2748 (1996). Therefore, in a preferred embodiment, the compositions of the present invention may comprise folic acid preferably in the amount ranging from about 2.25 to about 2.75 mg.

Diabetic nephropathy is a leading cause of end-stage renal disease with Type II diabetes comprising the largest disease group requiring renal support. Ibrahim et al., 13 BAILLIERES CLIN. ENDOCRINOL. METABOL. 239-264 (1999). The trace mineral, chromium, may promote insulin activity by increasing insulin binding and insulin receptor number. Chromium also activates the insulin receptor kinase leading to increased insulin sensitivity. Anderson et al., 26 DIABETES METABOL. 22-27 (2000). It is estimated that 90% of adults in the United States consume less than the recommended minimum amount of chromium. In addition, the typical renal diet is likely to be further restricted in chromium content. NUTRITION CONCEPTS AND CONTROVERSIES 293 (Sizer et al., 8th ed.). Hence, to maintain appropriate chromium levels in renal patients, one embodiment of the compositions of the present invention may comprise chromium preferably in the amount ranging from about 180 to about 220 μg.

Selenium is a component of the antioxidant enzyme, glutathione peroxidase, which plays a critical role in the control of oxygen metabolism, particularly catalyzing the breakdown of hydrogen peroxide. Burk, 3 ANNU. REV. NUTR. 53-70 (1983). Glutathione peroxidase prevents the generation of free radicals and decreases the risk of oxidative damage to numerous tissues, including the vascular system. Holben, 99 J. AM. DIET. ASSOC. 836-843 (1999). Diabetic patients have even higher levels of oxidative stress due to the combination of diabetes and renal disease. Kedziora-Komatowska, et al., 11 NEPHROL. DIAL. TRANSPLANT. 2829-2832 (1998). Selenium may be lost during dialysis therapy and dietary selenium may be less than adequate due to protein restrictions. Several studies have demonstrated significant decreases in serum selenium, selenium-dependent enzymes, and increased lipid peroxidation in dialysis patients. Smith et al., 7 J. RENAL NUTR. 69-72 (1997); Zima et al., 16 BLOOD PURIF. 253-260 (1998). Oral and intravenous selenium supplementation has proven to be effective in improving the selenium status and immune function of renal patients, while decreasing the levels of oxidative stress products. Temple et al., 10 J. RENAL NUTR. 16 (2000). Therefore, in a preferred embodiment, the compositions of the present invention may comprise selenium preferably in amounts ranging from about 63 to about 77 μg.

There are more than 200 zinc metalloenzymes including aldolase, alcohol dehydrogenase, RNA polymerase, and protein kinase C. Thus, zinc plays a role in numerous metabolic activities such as nucleic acid production, protein synthesis, and development of the immune system. Zima et al., 17 BLOOD PURIF. 182-186 (1999). Several studies have shown decreased serum levels of zinc in dialysis patients and patients with renal failure. Thomson et al., 23 KIDNEY INT. 9-14 (1983); Muirhead et al., 6 AM. J. NEPHROL. 422-426 (1986). Zinc supplementation has been shown to improve a number of clinical symptoms observed in renal patients such as dygeusia, nerve conduction velocity, and impotency, and it has been proposed that zinc supplementation may restore impaired cell-mediated immunity and lymphocyte function. Zima et al., 17 BLOOD PURIF. 182-186 (1999). One embodiment of the compositions of the present invention provides a supplemental dose of zinc, preferably in the amount of about 18 to about 22 mg.

The compositions of the present invention are preferably administered in amounts to patients that provide the supplementation required to alleviate the vitamin and mineral deficiencies associated with renal disease. In a preferred embodiment of the present invention, the composition comprises 50 mg of vitamin C, 35 IU vitamin E, 3 mg of thiamine, 2 mg of riboflavin, 20 mg of niacin, 10 mg of pantothenic acid, 15 mg of pyridoxine, 12 μg cyanocobalamin, 300 μg of biotin, 2.5 mg of folic acid, 200 μg of chromium, 70 μg of selenium, and 20 mg of zinc.

In a further preferred embodiment, the composition comprises about 45 mg to 55 mg vitamin C, 31.5 IU to 38.5 IU vitamin E, 2.7 mg to 3.3 mg thiamine (vitamin B1), 1.8 mg to 2.25 mg riboflavin (vitamin B2), 18 mg to 22 mg niacin (vitamin B3), 9 mg to 11 mg pantothenic acid (vitamin B5), 13.5 mg to 16.5 mg pyridoxine (vitamin B6), 10.8 μg to 13.2 μg cyanocobalamin (vitamin B12), 270 μg to 330 μg biotin, 2.25 mg to 2.75 mg folic acid, 180 μg to 220 μg chromium, 63 μg to 77 μg selenium, and 18 mg to 22 mg zinc.

A preferred dosage of the compositions of the present invention may consist of one or more caplets for human oral consumption. If more than one caplet is used, each individual caplet may be identical to the other caplets, or each may contain only some of the ingredients of the composition, so that the combination of the different caplets comprises a composition of the present invention.

The compositions of the present invention represent a combination of essential vitamins and minerals that work together with various metabolic systems and physiological responses of the human body. The ingredients of the present invention are preferably combined into a composition which may be in the form of a solid powder, caplets, tablets, lozenges, pills, capsules, or a liquid, and which may be administered alone or in suitable combination with other components. For example, the composition of the present invention may be administered in one or more caplets or lozenges as practical for ease of administration. Each of the vitamins and minerals is commercially available, and can be blended to form a single composition or can form multiple compositions which may be co-administered.

To prepare the components of the present invention, each of the active ingredients may be combined in intimate admixture with a suitable carrier according to conventional compounding techniques. This carrier may take a wide variety of forms depending upon the form of the preparation desired for administration, e.g., oral, sublingual, nasal, topical patch, or parenteral. The composition may comprise one to three caplets or lozenges, the composition of each being identical to each other caplet or lozenge.

In preparing the composition in oral dosage form, any of the usual media may be utilized. For liquid preparations (e.g., suspensions, elixirs, and solutions) media containing for example water, oils, alcohols, flavoring agents, preservatives, coloring agents and the like may be used. Carriers such as starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like may be used to prepare oral solids (e.g., powders, caplets, pills, tablets, capsules, and lozenges). Controlled release forms may also be used. Because of their ease in administration, caplets, tablets, pills, and capsules represent the most advantageous oral dosage until form, in which case solid carriers are employed. If desired, tablets may be sugar coated or enteric coated by standard techniques.

The present invention also relates to methods for supplementing nutritional deficiencies in a patient. Specifically, the present invention relates to methods for supplementing the nutritional deficiencies in a patient comprising the step of administering to said patient compositions comprising vitamin C, vitamin E, B-complex vitamins, chromium, selenium, and zinc.

In a preferred embodiment of the present invention, the methods for supplementing nutritional deficiencies in a patient or person in need thereof, comprise the step of administering to said patient the composition comprising 50 mg of vitamin C, 35 IU vitamin E, 3 mg of thiamine, 2 mg of riboflavin, 20 mg of niacin, 10 mg of pantothenic acid, 15 mg of pyridoxine, 12 μg cyanocobalamin, 300 μg of biotin, 2.5 mg of folic acid, 200 μg of chromium, 70 μg of selenium, and 20 mg of zinc.

In a further preferred embodiment, the methods of the present invention comprise administering to a patient compositions comprising about 45 mg to 55 mg vitamin C, 31.5 IU to 38.5 IU vitamin E, 2.7 mg to 3.3 mg thiamine (vitamin B1), 1.8 mg to 2.25 mg riboflavin (vitamin B2), 18 mg to 22 mg niacin (vitamin B3), 9 mg to 11 mg pantothenic acid (vitamin B5), 13.5 mg to 16.5 mg pyridoxine (vitamin B6), 10.8 μg to 13.2 μg cyanocobalamin (vitamin B12), 270 μg to 330 μg biotin, 2.25 mg to 2.75 mg folic acid, 180 μg to 220 μg chromium, 63 μg to 77 μg selenium, and 18 mg to 22 mg zinc.

These methods also preferably compromise the administration of one or more of the compositions of the present invention to a patient afflicted with renal disease or renal insufficiency. In a preferred embodiment of the present invention, the methods preferably compromise the administration of one or more of the compositions to a patient suffering from end-stage renal disease and undergoing dialysis treatment. In a further preferred embodiment, the methods preferably comprise the administration of one or more of the compositions of the present invention to treat the nutritional deficiencies of any disease state that results in increased oxidative stress, elevated cholesterol levels, or elevated homocysteine levels.
 

 

Claim 1 of 33 Claims

1. A composition comprising:

about 63 μg to about 77 μg selenium; about 18 mg to about 22 mg zinc; about 45 mg to about 55 mg of vitamin C; about 31.5 IU to about 38.5 IU vitamin E; about 2.25 mg to about 2.75 mg folic acid; about 270 μg to about 330 μg biotin; about 9 mg to about 11 mg pantothenic acid; about 18 mg to about 22 mg niacin; about 13.5 mg to about 16.5 mg pyridoxine; about 1.8 mg to about 2.25 mg riboflavin; about 10.8 μg to about 13.2 μg cyanocobalamin; and about 2.7 mg to about 3.3 mg thiamine, wherein said composition is free of added chromium any other added minerals and any other added vitamins.

____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.

 

 

     
[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]