Internet for Pharmaceutical and Biotech Communities
| Newsletter | Post Jobs | Advertising |
 
 
 

  

Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 
   



 

Title:  Method for treating a mucus secretion
United States Patent: 
6,986,893
Issued: 
January 17, 2006
Inventors: 
Aoki; Kei Roger (Coto de Caza, CA); Grayston; Michael . (Irvine, CA)
Assignee:
 Allergan, Inc. (Irvine, CA)
Appl. No.: 
008722
Filed: 
December 6, 2001


 

Executive MBA in Pharmaceutical Management, U. Colorado


Abstract

A method and composition for treating a patient suffering from an excessive mucus secretion includes administration to the patient of a therapeutically effective amount of a botulinum toxin type A, B, C, D, E, F and/or G.

SUMMARY OF THE INVENTION

The present invention provides a method for relieving pain, associated with muscle contractions, a composition and a method of treating conditions such as cholinergic controlled secretions including excessive sweating, lacrimation and mucus secretions and a method for treating smooth muscle disorders including, but not limited to, spasms in the sphincter of the cardiovascular arteriole, gastrointestinal system, urinary, gall bladder and rectum, which method comprises administering to the patient suffering from said disorder or condition a therapeutically effective amount of Botulinum toxin selected from the group consisting of Botulinum toxin types B, C, D, E, F and G.

Each serotype of Botulinum toxin has been identified as immunologically different proteins through the use of specific antibodies. For example, if the antibody (antitoxin) recognizes, that is, neutralizes the biological activity of, for example, type A it will not recognize types B, C, D, E, F or G.

While all of the Botulinum toxins appear to be zinc endopeptidases, the mechanism of action of different serotypes, for example, A and E within the neuron appear to be different than that of Type B. In addition, the neuronal surface "receptor" for the toxin appears to be different for the serotypes.

In the area of use of the Botulinum toxins in accordance with the present invention with regard to organ systems which involve the release of neurotransmitter, it is expected to introduce the toxins A, B, C, D, E, F, and G directly by local injections.

The present invention comprises a method for treating a mucus secretion of a patient by local administration to a patient an effective amount of a botulinum toxin (A, B, C, D, E, F or G) in order to reduce a mucus secretion of the patient. The mucus secretion is not a symptom of rhinorrhea. The mucus secretion can be a cholinergic influenced mucus secretion. The botulinum toxin can be administered in an amount of between 0.01 units and 5000 units, such as between 0.01 unit and 500 units.

A detailed embodiment of the present invention comprises a method for treating a cholinergic influenced mucus secretion of a human patient by administering to a human patient a therapeutically effective amount of botulinum toxin type A in order to reduce the mucus secretion, wherein the mucus secretion is not a symptom of rhinorrhea. A further method for treating a mucus secreting gland can comprise the step of administering to a mucus secreting gland a botulinum toxin thereby reducing a mucus secretory activity of the gland, wherein the mucus secretion is not a symptom of rhinorrhea. The gland can be an excessively secreting mucus gland influenced by the cholinergic nervous system. The botulinum toxin can be administered by injection into the mucus gland or into the local area of the mucus gland.

Another detailed embodiment of the present invention can comprise a method for treating an excessively secreting mucus gland, the method comprising the step of injecting an excessively secreting, cholinergic nervous system influenced mucus gland or local mucus gland area of a human patient with a therapeutically effective amount of botulinum toxin type A in order to reduce the excessive mucus gland secretion, wherein the mucus secretion is not a symptom of rhinorrhea.

DETAILED DESCRIPTION OF THE INVENTION

The Botulinum toxins used according to the present invention are Botulinum toxins type A, B, C, D, E, F and G.

The physiologic groups of Clostridium botulinum types are listed in Table I.

TABLE I
 
Physiologic Groups of Clostridium botulinum
              Phenotypically
  Toxin     Glucose   Phages Related
  Sero-   Milk Fermen-   & Clostridium
Group Type Biochemistry Digest tation Lipase Plasmids (nontoxigenic)
 
I A, B, F proteolytic saccharolytic + + + + C. sporogenes
II B, E, F nonproteolytic saccharolytic - + + +
    psychotrophic
III C, D nonproteolytic saccharolytic + + + + C. novyi
IV G proteolytic nonsaccharolytic + - - - C. subterminale
 


These toxin types may be produced by selection from the appropriate physiologic group of Clostridium botulinum organisms. The organisms designated as Group I are usually referred to as proteolytic and produce Botulinum toxins of types A, B and F. The organisms designated as Group II are saccharolytic and produce Botulinum toxins of types B, E and F. The organisms designated as Group III produce only Botulinum toxin types C and D and are distinguished from organisms of Groups I and II by the production of significant amounts of propionic acid. Group IV organisms only produce neurotoxin of type G. The production of any and all of the Botulinum toxin types A, B, C, D, E, F and G are described in Chapter 1 of Botulinum Neurotoxin and Tetanus Toxin, cited above, and/or the references cited therein. Botulinum toxins types B, C, D, E, F and G are also available from various species of clostridia.

Currently fourteen species of clostridia are considered pathogenic. Most of the pathogenic strains produce toxins which are responsible for the various pathological signs and symptoms. Organisms which produce Botulinum toxins have been isolated from botulism outbreaks in humans (types A, B, E and F) and animals (types C and D). Their identities were described through the use of specific antitoxins (antibodies) developed against the earlier toxins. Type G toxin was found in soil and has low toxigenicity. However, it has been isolated from autopsy specimens, but thus far there has not been adequate evidence that type G botulism has occurred in humans.

Preferably, the toxin is administered by means of intramuscular injection directly into a local area such as a spastic muscle, preferably in the region of the neuromuscular junction, although alternative types of administration (e.g., subcutaneous injection), which can deliver the toxin directly to the affected region, may be employed where appropriate. The toxin can be presented as a sterile pyrogen-free aqueous solution or dispersion and as a sterile powder for reconstitution into a sterile solution or dispersion.

Where desired, tonicity adjusting agents such as sodium chloride, glycerol and various sugars can be added. Stabilizers such as human serum albumin may also be included. The formulation may be preserved by means of a suitable pharmaceutically acceptable preservative such as a paraben, although preferably it is unpreserved.

It is preferred that the toxin is formulated in unit dosage form; for example, it can be provided as a sterile solution in a vial or as a vial or sachet containing a lyophilized powder for reconstituting a suitable vehicle such as saline for injection.

In one embodiment, the Botulinum toxin is formulated in a solution containing saline and pasteurized human serum albumin, which stabilizes the toxin and minimizes loss through non-specific adsorption. The solution is sterile filtered (0.2 micron filter), filled into individual vials and then vacuumdried to give a sterile lyophilized powder. In use, the powder can be reconstituted by the addition of sterile unpreserved normal saline (sodium chloride 0.9% for injection).

The dose of toxin administered to the patient will depend upon the severity of the condition; e.g., the number of muscle groups requiring treatment, the age and size of the patient and the potency of the toxin. The potency of the toxin is expressed as a multiple of the LD50 value for the mouse, one unit (U) of toxin being defined as being equivalent to that amount of toxin that kills 50% of a group of 18 to 20 female Swiss-Webster mice, weighing between 17-22 grams each.

The dosages used in human therapeutic applications are roughly proportional to the mass of muscle being injected. Typically, the dose administered to the patient may be up from about 0.01 to about 1,000 units; for example, up to about 500 units, and preferably in the range from about 80 to about 460 units per patient per treatment, although smaller of larger doses may be administered in appropriate circumstances such as up to about 50 units for the relief of pain and in controlling cholinergic secretions.

As the physicians become more familiar with the use of this product, the dose may be changed. In the Botulinum toxin type A, available from Porton, DYSPORT, 1 nanogram (ng) contains 40 units. 1 ng of the Botulinum toxin type A, available from Allergan, Inc., i.e., BOTOX®, contains 4 units. The potency of Botulinum toxin and its long duration of action mean that doses will tend to be administered on an infrequent basis. Ultimately, however, both the quantity of toxin administered and the frequency of its administration will be at the discretion of the physician responsible for the treatment and will be commensurate with questions of safety and the effects produced by the toxin.

In some circumstances, particularly in the relief of pain associated with sports injuries, such as, for example, charleyhorse, botulinum type F, having a short duration activity, is preferred.

Mucus coats many epithelial surfaces and is secreted into fluids such as saliva. Mucus is composed chiefly of mucins and inorganic salts suspended in water. Mucus adheres to many epithelial surfaces where it serves as a diffusion barrier against contact with noxious substances (such as gastric acid and smoke) and as a lubricant to minimize shear stresses. Mucus coatings are particularly prominent on the epithelia of the respiratory, gastrointestinal and genital tracts, including on the cervix. Mucus is also an abundant and important component of saliva. Mucus secreting cells are widely distributed through the body. Thus, goblet cells are abundant in the epithelium of the gastrointestinal and respiratory tracts and mucous glands in these same organs deliver their products through ducts into the intestine and respiratory system. Between 0.01 units (i.e. of a botulinum toxin type A) and 5,000 units (i.e. of a botulinum toxin type B) of a botulinum toxin can be local administered to treat an excessive mucus secretion (where the excessive mucus secretion in not due to rhinorrhea) such as an excessive mucus secretion by the gastrointestinal tract, genital tract or by the respiratory tract. Rhinorrhea is characterized by a free discharge of thin, nasal mucus, due to inflamed or infected sinuses. U.S. Pat. No. 5,766,605 discusses use of a botulinum toxin to treat a symptom of rhinorrhea. A treatment of an excessive mucus secretion according to the present invention excludes treatment of rhinorrhea because of inter alia: (a) the possibility that local administration of a botulinum toxin to the highly vascularized nasal mucosal cells can result in entry of botulinum toxin into the systemic circulation; (b) the considerable sensitivity of inflamed nasal mucosal glands to local administration of a pharmaceutical, and; (c) the typically brief duration of the condition of rhinorrhea (days), as compared to the longevity of the effect of administration of a botulinum toxin (months).

The invention will now be illustrated by reference to the following nonlimiting examples.

In each of the examples, appropriate areas of each patient are injected with a sterile solution containing the confirmation of Botulinum toxin. Total patient doses range from about 0.01 units to about 10,000 units (i.e. of type B toxin) of a botulinum toxin. Before injecting any muscle group, careful consideration is given to the anatomy of the muscle group, the aim being to inject the area with the highest concentration of neuromuscular junctions, if known. Before injecting the muscle, the position of the needle in the muscle is confirmed by putting the muscle through its range of motion and observing the resultant motion of the needle end. General anaesthesia, local anaesthesia and sedation are used according to the age of the patient, the number of sites to be injected, and the particular needs of the patient. More than one injection and/or sites of injection may be necessary to achieve the desired result. Also, some injections, depending on the muscle to be injected, may require the use of fine, hollow, teflon-coated needles, guided by electromyography.

Following injection, it is noted that there are no systemic or local side effects and none of the patients are found to develop extensive local hypotonicity. The majority of patients show an improvement in function both subjectively and when measured objectively.
 

Claim 1 of 17 Claims

1. A method for treating a mucus secretion of a patient, the method comprising the step of administering an effective amount of a botulinum toxin to a region of a patient selected from the group consisting of the gastrointestinal tract and the genital tract in order to reduce a mucus secretion of the patient, wherein the mucus secretion is not a symptom of rhinorrhea.

____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.

 

 

     
[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]