Internet for Pharmaceutical and Biotech Communities
| Newsletter | Post Jobs | Advertising |
 
 
 

  

Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 
   



 

Title:  Chewable compositions containing a gel-forming extract of psyllium
United States Patent: 
7,014,862
Issued: 
March 21, 2006
Inventors:
 Myatt; Graham John (Bracknell, GB); Harrison; Christopher Neil (Langstone Hampshire, GB); Cimiluca; Paul Alfred (Cincinnati, OH); Kajs; Theresa Marie (Loveland, OH)
Assignee: 
The Procter & Gamble Company (Cincinnati, OH)
Appl. No.: 
368225
Filed: 
February 18, 2003


 

Executive MBA in Pharmaceutical Management, U. Colorado


Abstract

Oral compositions, suitable for chewing, comprising a gel-forming polysaccharide isolated from psyllium seed husks and an excipient that is fast dissolving in the oral cavity, provide good aesthetics and acceptable mouthfeel as perceived by the consumer. The oral compositions are useful for normalizing bowel function, reducing human serum cholesterol levels and treatment of other gastrointestinal disorders.

DETAILED DESCRIPTION OF THE INVENTION

Gel-Forming Polysaccharide

The present compositions comprise from about 10% to about 90% of a gel-forming polysaccharide, in one embodiment from about 25% to about 75%, in another embodiment from about 40% to about 60%. The gel-forming polysaccharide is comprised primarily of xylose and arabinose. The gel-forming polysaccharide obtained by the method disclosed herein is comprised primarily of xylose and arabinose. In one embodiment, the gel-forming polysaccharide has at least about 50% xylose and arabinose by weight, in another embodiment at least about 75% xylose and arabinose, in yet another embodiment at least about 80% xylose and arabinose. In one embodiment, the xylose to arabinose dry weight ratio is at least about 3:1, in one embodiment from about 3:1 to about 4.5:1, in another embodiment from about 3:1 to about 4:1 and in yet another embodiment from about 3.3:1 to about 3.6:1. In one embodiment the gel-forming polysaccharide comprises from about 55% to about 70% of xylose and from about 15% to about 20% of arabinose. In addition, low levels of galactose and uronic acid are present in the gel-forming polysaccharide of the present invention. For example, the level of galactose is less than about 2%, in one embodiment from about 1% to about 2%. The level of uronic acid is generally less than 10%. In one embodiment the dry weight ratio of xylose to galactose is more than about 25:1, in another embodiment more than about 30:1 and in yet another embodiment more than about 35:1. In one embodiment the dry weight ratio of xylose to uronic acid is more than about 5:1, in one embodiment about 10:1 and in yet another embodiment about 15:1. Generally, the gel-forming fraction has the following sugar composition:

   
  Component Amount present in gel-forming polysaccharide
   
  Xylose From about 55% to about 70%
  Arabinose From about 15% to about 20%
  Rhamnose From 0% to about 5%
  Mannose From 0% to about 0.5%
  Galactose From about 1% to about 2%
  Glucose From 0% to about 0.5%
  Uronic Acid From about 0.5% to about 50%
   

In one embodiment, the gel-forming polysaccharide of the present invention is extracted from psyllium seed husk in the following manner:

Step 1. Suspending unmilled psyllium seed husk in a dilute alkaline aqueous solution containing a reducing agent.

Step 2. Where previously unsanitized psyllium is utilized, disinfecting the alkali soluble and alkali insoluble material by any means known in the art such as pasteurization, irradiation, electron beam or pulsed light.

Step 3. Removing the alkali insoluble material by any process known in the art, for example centrifugation, filtration, expression or settling.

Step 4. Acidifying the solution to a pH of about 4.5 to about 6.5 by the addition of acid, to yield an acid gel-forming material, i.e. the gel-forming polysaccharide.

Step 5. Dewatering the gel material by the addition of a desiccant with high shear mixing and then separating the gel material from the desiccant/water solution.

Step 6. Extruding the gel material into individual particles with an average particle size of greater than 250 microns.

Step 7. Fluidized bed drying the gel material rendering the compressible gel-forming polysaccharide in powder form.

The starting material employed in the fractionation of psyllium seed husk may or may not be milled or physically altered or refined, prior to the initial alkaline solubilization step. U.S. Pat. No. 6,287,609 to Marlett et al., teaches that it is necessary for the psyllium seed husk to be processed so that it is in small pieces, prior to alkaline solubilization, for ease of separation of the viscous polysaccharides from the insoluble fibers of the psyllium husk. However, clumping and agglomeration of the milled psyllium seed husk occurs when the milled husk is added to the alkaline mixture. It has been discovered that the use of unmilled psyllium seed husk as an initial starting material avoids clumping or agglomerating of the psyllium material during mixing with the alkaline solution, but does not hinder the effectiveness of the alkaline solubilization step. The use of unmilled psyllium as a starting material for the fractionation provides a gel-forming polysaccharide with increased swell volume. The swell volume of the gel-forming polysaccharide obtained by the present invention is greater than about 40 milliliters of gel per 0.5 grams dry gel-forming polysaccharide, in one embodiment greater than about 50 milliliters of gel per 0.5 grams dry gel-forming polysaccharide. The percent yield of the gel-forming polysaccharide of the present invention is at least about 75%, in one embodiment at least about 80%. The psyllium seed husk of the present invention may or may not be sanitized prior to processing. The psyllium seed husk may be sanitized or unsanitized prior to alkaline solubilization. Where raw (unsanitized) psyllium is used in the fractionation process, a disinfection step is incorporated in the fractionation process and may be carried out as described below.

Alkaline solubilization (Step 1) of psyllium seed husk is known. Typically, previous alkaline solubilization processes utilized concentrations of strong bases and lacked the presence of a reducing agent. Recognizing the harsh nature of this treatment and the partial degradation of polysaccharide chains in the gel-forming fraction, it has been shown that a gel-forming fraction of psyllium husk could be obtained, presumably in a form more suitable for further fractionation, if desired, using a much less concentrated alkaline solution and a suitable reducing agent, such as borohydride. Though up to about 4N alkaline solution can be utilized, the concentration of base in the alkaline solubilization is at least about 0.1N and not more than about 10N; in one embodiment at least about 0.1N and not more than about 0.5N; and in yet another embodiment at least about 0.1N and not more than about 0.3N. Any standard base can be used in the alkaline extraction, including, but not limited to, sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonium hydroxide, and tetramethyl ammonium hydroxide. A suitable ratio of psyllium seed husks to alkaline solution is from about 0.1 gram seed husk to about 400 ml (milliliters) of alkaline solution to about 4 grams seed husk to about 400 ml alkaline solution. The alkaline solubilization should be carried out at a pH of from about 9 to about 12.

A chemical reducing agent, such as borohydride, should be added to the alkaline solubilization step to minimize base-catalyzed depolymerization. Borohydrides suitable for this step include, but are not limited to, lithium borohydride, potassium borohydride and sodium cyanoborohydride. In one embodiment the reducing agent is sodium borohydride. An effective concentration of a reducing agent is from about 50 mg/L (milligrams/liter) to about 10 g/L (grams/liter), in one embodiment from about 100 mg/L to about 4 g/L, in another embodiment from about 500 mg/L to about 2 g/L, and in yet another embodiment from about 800 mg/L to about 1.2 g/L.

The time of solubilization can be varied from about 15 minutes to about 24 hours, in one embodiment from about 30 minutes to about 180 minutes, for optimum efficiency. Likewise, the temperature at which the solubilization step is conducted can vary from about 5 C. to about 40 C. In one embodiment the time of solubilization is from about 60 minutes to about 120 minutes at ambient temperature. The alkaline solubilization may optionally be carried out in a nitrogen atmosphere to prevent oxidation from occurring.

The disinfecting step, Step 2, is required when the psyllium seed husk has not been sanitized prior to mixing with the alkaline solution. If the unmilled psyllium seed husk is sanitized by any method known in the art, such as steam sanitation, prior to the alkaline solubilization step, this disinfection step is not necessary. Disinfection refers to inactivating, destroying, eliminating, or inhibiting the growth of microorganisms. In one embodiment these microorganisms are disease-producing agents. Disinfection of the combined alkali soluble and alkali insoluble fractions may be conducted by any means known in the art. For example, pasteurization, irradiation, electron beam and pulsed light are all acceptable means of disinfecting the alkali soluble and alkali insoluble fraction mixture. In one embodiment, the mixture is pasteurized. Pasteurization entails heating the mixture to a moderate temperature for a period of time to disinfect, without changing, to any extent, the chemical composition of the mixture. Pasteurization may be carried out at a temperature of from about 90 C. to about 120 C. for a period of from about 30 seconds to about 120 seconds.

The alkali insoluble material is separated from the alkali soluble materials in Step 3 of the fractionation. This can be accomplished by any separation means known in the art that will not alter substantially the insoluble material, for example centrifugation. One skilled in the art will know how to alter the time and force of the centrifugation to adapt the separation to different centrifuge rotors, plant materials and alkaline solutions. Other methods to accomplish this separation are well known in the art and may be better suited for large-scale production of the gel-forming polysaccharide, such as settling, filtration, or expression. Optionally, the insoluble material can be further washed with the alkaline solution and re-separated in an effort to improve the yield of the alkaline soluble material.

In Step 4 of the instant process, the alkaline soluble materials are acidified to a pH of from about 4.5 to about 6.5, in one embodiment from about 5 to about 6, to yield an acid gel-forming material, i.e. the gel-forming polysaccharide. Suitable acids for acidification include, but are not limited to, acetic, hydrochloric, sulfuric, oxalic, trichloroacetic and trifluoroacetic acids. The duration and temperature of the acidification can vary. The acidification may suitably take place at ambient temperature for about 2 hours, though the time and temperature may vary.

Optionally, a second extraction may be appropriate at this stage of the fractionation process. Where desired, the acid soluble and acid gel-forming fractions may be separated, by any means known in the art, such as centrifugation, settling, straining and the like. Again an optional washing with water, buffer, or other suitable solvent may be employed to improve the efficiency of the separation. This second extraction may be employed to deliver a more purified gel-forming polysaccharide, but may also lead to degradation and loss of some of the gel-forming polysaccharide. It has been found that multiple extraction steps are not necessary to yield a suitable gel-forming polysaccharide with increased swell volume and a reduced in gelation rate.

Excess water is then removed from the acid gel-forming polysaccharide fraction in Step 5 of the fractionation process. Any method known in the art may be used to dewater the gel material. In one embodiment the gel material may be dewatered by desiccation with a solvent, such as ethanol, acetone, methanol or isopropyl alcohol. The addition of the solvent may occur with high shear mixing. The gel material is then separated from the solvent/water mixture by any method known in the art. For ease and simplicity of drying, the solids content of the gel material should be at least about 50%, in one embodiment the solids content is at least about 75%, in another embodiment the solids content of the gel material is about 80%.

The gel material may be dried in any manner known in the art, such as lyophilization, fluidized bed drying or vacuum tray drying. In one embodiment, fluidized bed drying of the gelatinous material is employed. The gel material is extruded to form small grain-like particles and placed into a fluidized bed dryer. The particle size of the gel-forming polysaccharide should be greater than 250 microns, in one embodiment from about 250 microns to about 1000 microns, and in another embodiment from about 350 to about 750 microns. The fluidized bed dryer may be equipped to provide a cyclonic airflow, which helps prevent the particles sticking together and allows the particles to fluidize. The extruded particles are suspended in the column of air until dried to at least about 85% solids content. During drying, the gel material should be maintained at a temperature of less than about 75 C. It is preferred that the solids content of the gel material is greater than about 20% prior to fluidized bed drying. If necessary, previously dried gel material may be added by mixing to the low solids content gel material, prior to fluidized bed drying, to increase the solids content to greater than about 20%. Not intending to be bound by theory, it is believed that the fluidized bed drying technique renders a gel-forming polysaccharide powder composition wherein the individual particles retain a honeycomb shape. The honeycomb shape is useful to facilitate compression of the gel-forming polysaccharide powder, particularly by direct compression means, into a solid dosage form.

Importantly, the gel-forming polysaccharide of the present invention has reduced allergenicity when compared to milled, sanitized psyllium seed husk. As used herein the term "allergenicity" is a measure of the amount of allergenic protein present in the gel-forming polysaccharide. Psyllium seed husk contains specific protein fractions, which are considered allergens. Allergenicity is determined by extracting proteins from a sample of material (e.g. the gel-forming polysaccharide or psyllium seed husk) and then determining the allergenicity of those proteins by known electrophoresis techniques, such as sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE), or immunoblotting. One skilled in the art can readily utilize these techniques to evaluate the reduction in allergenicity of a material versus a control (e.g. psyllium seed husk). For example, U.S. Pat. No. 5,248,502, to Ndife, teaches that immunoblotting is used to determine the extent of IgE antibody binding to specific psyllium proteins, providing a measure of the allergenicity of psyllium protein fractions. The gel-forming polysaccharide fraction of psyllium husk obtained by the process described herein has reduced allergenicity in comparison to milled sanitized psyllium seed husk (the control). A reduction in allergenicity of greater than about 90% versus the control, in one embodiment greater than about 95% versus the control, is achieved by fractionating psyllium seed husk by the process described herein. Thus, the level of allergenic protein present in the gel-forming polysaccharide is less than about 10% of the allergenic protein present in psyllium seed husk, in one embodiment less than about 5% of the allergenic protein present in psyllium seed husk. Not intending to be bound by theory, it is believed that the reduction in allergencity is due to several factors. Allergenic proteins are believed to be mainly present in the alkali insoluble fraction, which is removed in large part during Step 3 of the fractionation process. The subsequent dewatering of the remaining gel material with a solvent/dessicant may result in denaturing of the proteins remaining in the gel material thereby further reducing allergenicity.

Fast Dissolving Expicient

The present compositions comprise from about 10% to about 90% of a fast dissolving excipient, in one embodiment from about 30% to about 70%, in another embodiment from about 40% to about 60%.

As used herein the term "fast dissolving excipient" is meant to describe those excipients that dissolve quickly in the salivary conditions of the oral cavity. To determine the dissolution rate of various excipients the following method is used, which simulates the environment of the oral cavity:

  • 1) 2.5 grams of excipient material is weighed and hand pressed into a tablet. The tablet is pressed to a desired tablet "crush" hardness of approximately 8000 grams. The tablet "crush" hardness is measured by calculating the force, in grams, needed to crush the tablet.
  • 2) To determine the tablet dissolution in the salivary environment of the oral cavity, commercially available artificial saliva, such as sterile refined porcine gastric mucin, is used. Saliva Orthana, manufactured by A/S Orthana Keisk Fabrik, Kastrup, Denmark is a suitable artificial saliva.
  • 3) In a beaker, 450 mL (milliliters) of the artificial saliva is heated to 32 C. and stirred at 300 rpm (revolutions per minute) with a magnetic stirrer. 40 mL of the preheated saliva is removed and placed in a 60 mL beaker and stirred at 400 rpm.
  • 4) The excipient tablet is added to the artificial saliva. The time in seconds for the tablet to breakup from a tablet shape into pieces is recorded as the tablet breakdown time. The time in seconds that the tablet takes to dissolve completely into the solution is recorded as the dissolution time.

Fast dissolving excipients are those excipients with a dissolution time of about 200 seconds or less based on the above method, in one embodiment about 150 seconds or less. Dissolution times of excipients may vary based on both chemical and physical properties, such as particle size. Fast dissolving excipients include but are not limited to fast saliva dissolving polyols, specifically the fast saliva dissolving sugar alcohols, selected from the group consisting of sorbitol, isomalt and mixtures thereof. In one embodiment the fast dissolving excipient is sorbitol. The average particle size of the fast dissolving excipient is at least about 250 microns, in one embodiment from about 250 microns to about 1000 microns; in another embodiment the average particle size is about 350 microns to about 750 microns. For ease of tabletting and flowability, the average particle size of the fast dissolving excipients should target the particle size of the gel-forming polysaccharide.

Slow Dissolving Excipient

The present compositions may comprise from about 0.01% to about 30% of a slower dissolving excipient, in one embodiment from about 0.1% to about 25%, in another embodiment from about 1% to about 20%.

As used herein the term "slow dissolving excipient" is meant to describe those excipients dissolve slowly in saliva. That is, slow dissolving excipients are those excipients that dissolve in saliva, after more than about 200 seconds, as determined by the above described method, in one embodiment more than about 250 seconds. The slow dissolving excipients include, but are not limited to, the slow saliva dissolving polyols, specifically the slow saliva dissolving sugar alcohols, selected from the group consisting of mannitol, maltitol, maltodextrin, xylitol and mixtures thereof. In one embodiment the slow dissolving excipient is mannitol. The average particle size of the slow dissolving excipient is at least about 250 microns, in one embodiment from about 250 microns to about 1000 microns, in another embodiment the average particle size is about 350 microns to about 750 microns. For ease of tabletting and flowability, the average particle size of the slow dissolving excipients should target the particle size of the gel-forming polysaccharide and the fast dissolving excipient.

Optional Ingredients

Once dried the individual gel-forming polysaccharide particles may be coated. Coating of the polysaccharide particles may further improve the mouthfeel and aesthetics of the present compositions. The coating acts as a barrier to water and, thus, dampens the hygroscopic action of the polysaccharide when placed on the tongue of the consumer. Acceptable coating materials include, but are not limited to, carnuba wax, polyethylene glycol, hydroxypropyl methylcellulose, copolymers of poly(acrylate, methacrylate), polymethacrylate, ethylcellulose, water-soluble polymers derived from Indian corn or mixtures thereof. Alternatively, a coating may be applied to a solid oral dosage form containing the gel-forming polysaccharide or to both the individual gel-forming polysaccharide particles and the final solid dosage form. The coating may be applied to all or a part of the solid oral dosage form, such as only the large flat surfaces of a tablet.

The amount of coating deposited on the tablet, or on the individual particles of polysaccharide is typically in the range of from about 2% to about 5% by weight of the tablet or granule. The coating may further comprise a plasticizer such as polyethylene glycol or polypropylene glycol. The amount of plasticizer may be from about 15% to about 40% by weight of the coating material. Dyes, pigments, flavorants, and other optional ingredients may be added to the coating material.

A lubricating agent may be added to the compositions of the present invention. Suitable lubricants include, but are not limited to, talc, magnesium stearate, calcium stearate, stearic acid, hydrogenated vegetable oils, polyethylene glycol, sodium benzate, sodium chloride, leucine, sodium lauryl sulfate, and magnesium lauryl sulfate. Lubricants are generally present at a level of about less than about 5% by weight and in one embodiment less than about 1%.

The compositions described herein may optionally further comprise one or more flavorants. These flavoring agents can be chosen from synthetic flavoring liquids and/or oils derived from plants, leaves, flowers, fruits and so forth, and combinations thereof. Representative flavoring liquids include: vanillin, sage, marjoram, parsley oil, spearmint oil, cinnamon oil, oil of wintergreen (methylsalicylate), peppermint oils, clove oil, bay oil, anise oil, and eucalyptus oil. Also useful are artificial, natural or synthetic fruit flavors such as citrus oils, including lemon, orange, banana, grape, lime, apricot and grapefruit, and fruit essences, including apple, strawberry, cherry, orange, pineapple and so forth; bean and nut derived flavors such as coffee, cocoa, cola, peanut, almond; and spices such as cinnamon, nutmeg, ginger and the like, and so forth. Additionally, flavor adsorbed onto a hydrophilic matrix may be included, e.g. "spray-dried" flavors. Furthermore, encapsulated flavors may be included. In one embodiment the flavorant comprises citric acid. The amount of flavorant employed is normally a matter of preference subject to such factors as flavor type and strength of flavor desired. The flavorant may be incorporated into one or more of the following: the tablet; the coating of the tablet; or the coating of the individual particles of gel-forming polysaccharide, where such coatings are employed. Flavorants may be present in amounts up to about 4%, in one embodiment about 0.01% to about 3.0%, in another embodiment about 0.2% to about 2.5%, by weight of the total composition.

One or more pigments, dyes, colorants and their corresponding lakes may also be added to modify the appearance of the compositions herein to render the product more acceptable to the consumer. Appropriate levels are selected for the particular impact that is desirable to the consumer. The levels of pigments and colorants may be in the range of about 0.001% to about 20%, in one embodiment from about 0.01% to about 15% and in another embodiment from about 0.1% to about 10% by total weight of the composition. Suitable pigments and colorants include talc, mica, magnesium carbonate, calcium carbonate, magnesium silicate, aluminum magnesium silicate, silica, titanium dioxide, zinc oxide, red iron oxide, brown iron oxide, yellow iron oxide, black iron oxide, ferric ammonium ferrocyanide, bismuth oxychloride, manganese violet, ultramarine, nylon powder, polyethylene powder, methacrylate powder, polystyrene powder, silk powder, crystalline cellulose, starch, titanated mica, iron oxide titanated mica, bismuth oxychloride, FD&C Red 40, D&C Reds 3, 22, 28, 33 and 36, FD&C Yellows 5 and 6, D&C Yellow 10, FD&C Blues 1 and 2, FD&C Green 3, beta-carotene, caramel, cochineal extract, canthaxanthinin, and mixtures thereof. Generally the particle size of the colorants, dyes, lakes and pigments included within the compositions of the present invention are about less about 250 microns and in one embodiment less than about 150 microns. To ensure uniform mixing and to prevent color separation in the resulting formulation, the colorant, dye, pigment or lake may be mixed with the gel-forming polysaccharide prior to the addition of other ingredients. Alternatively, the colorant, dye, pigment or lake may be incorporated into the coating of the tablet or the individual particles of gel-forming polysaccharide where such coatings are present.

One or more nutrients may be included in the compositions of the present invention. Nutrients include minerals, vitamins, oral nutritional supplements, enteral nutritional supplements, herbals and mixtures thereof. Useful minerals include calcium, phosphorus, zinc, manganese, potassium, sodium, chromium, cobalt, copper, fluorine, chlorine or chloride, iodine, iron, magnesium, molybdenum, selenium, silicon, boron, tin, vanadium and mixtures thereof. Vitamins can be included with minerals or used independently. Suitable vitamins include Vitamins A, C, B-6, B-12, B-13, D, E and K, thiamine, riboflavin, pantothenic acid, niacin, folic acid, nicotinamide, para-aminobenzoic acid, bioflavonoids, caranitine, coenzyme Q, laetrile, lipoic acid, biotin, pangamic acid, beta carotene, and mixtures thereof. Oral nutritional supplements include amino acids, lipotropics, fish oil, and mixtures thereof. Amino acids include, but are not limited to L-Tryptophan, L-Lysine, Methionine, Threonine, Levocarnitine or L-carnitine and mixtures thereof. Lipotropics include, but are not limited to, choline, inositol, betaine, linoleic acid, linolenic acid, and mixtures thereof. Fish oil contains large amounts of Omega-3 (N-3) polyunsaturated fatty acids, eicosapentaenoic acid and docosahexaenoic acid. Enteral nutritional supplements include, but are not limited to, protein products, glucose polymers, corn oil, safflower oil, medium chain triglycerides. Minerals, vitamins, oral nutritional supplements and enteral nutritional supplements are described in more detail in Drug Facts and Comparisons (loose leaf drug information service), Wolters Kluer Company, St. Louis, Mo., 1997, pps. 3-17 and 54-57. Suitable herbals include, but are not limited to, wormwood (artemisia absinthium), mugwort (artemisiae herba), aniseed (anisi fructus), peppermint (menthae pipertiae folium), rosehips (rosae pseudofructus), and mixtures thereof. Herbals are described in more detail in Herbal Drugs and Phytopharmaceuticals; A Handbook for Practice on a Scientific Basis, CRC Press, Stuttgart, Germany, 1994. Vitamins and minerals may be present at levels up to and including the recommended daily allowances for healthy adults, including those levels recommended for pregnant and lactating women, or at the levels generally administered for dietary supplements. Herbals, and oral and enteral nutritional supplements may be included in the formulations of the present formulation from about 0% to about 20%.

Because the gel-forming polysaccharide has a tacky, self-adherent nature, it is not necessary to add a binder to the compositions of the present invention to achieve the desired tablet properties. However, a binder may optionally be added. The binder is generally present from about 0.01% to about 5%. Suitable binders include, but are not limited to: starches; gelatin; microcrystalline cellulose; polyvinyl pyrrolidone; cellulosics such as methyl cellulose, hydroxypropyl cellulose, hydroxypropylmethylcellulose, ethyl cellulose, and hydroxyethyl cellulose; other natural and synthetics gums such as carboxymethylcellulose, acacia, sodium alginate, and Veegum; and mixtures thereof. In one embodiment the binder has a glass transition temperature of less than about 125 C., in another embodiment, the glass transition temperature is less than about 110 C.

The present compositions may further comprise one or more sweeteners which may be additional to the fast dissolving and slow dissolving excipients. Suitable sweeteners include natural and artificial, water soluble, water insoluble and intense sweeteners. The sweetening agent may be dextrose, sucrose, maltose, dextrin, dried invert sugar, mannose, xylose, ribose, glucose, fructose, levulose, galactose, corn syrup, high fructose corn syrup, corn syrup solids, partially hydrolyzed starch, aspartame, saccharin, and hydrogenated starch hydrolysate or combinations thereof Natural or artificial intense sweeteners such as dipeptide based intense sweeteners, monellin, thaumaoccous danielli, and L-aspartyl L-phenylalanine methyl ester and soluble saccharin salts may also be incorporated as sweeteners. The amount of the sweetener will vary with the type of sweetener selected and the desired level of sweetness. Sweetening agents and flavoring agents are typically used in the present compositions at levels of from about 0.005% to about 5%, by weight of the composition. The additional sweeteners may be incorporated into one or more of the following: the tablet; the coating of the tablet; or the coating of the individual particles of gel-forming polysaccharide, where such coatings are employed.

Method of Making

The gel-forming polysaccharide in dry, powdered form may be dry blended with a fast dissolving excipient for a period of about 10 minutes. Where a slow dissolving excipient is included in the compositions of the present invention, it may be dry blended along with the gel-forming polysaccharide and the fast dissolving excipient. Generally, optional ingredients, where included, may be blended separately. The polysaccharide mixture and the optional ingredients may then be blended together for a period of about 5 minutes using any method known in the art. To avoid color separation in the final product, the colorant may be mixed with the gel-forming polysaccharide prior to mixing of the polysaccharide with any other ingredients.

Compositions of the present invention may be tabletted in any manner known in the art, such as wet granulation, fluidized bed agglomeration, wet granulation, direct compression or the like. Unlike psyllium, the gel-forming polysaccharide fraction of psyllium used herein is compressible. Therefore, direct compression, not previously appropriate for psyllium containing compositions is the preferred method for tabletting compositions of the present invention because of its ease and simplicity. Thus, if desired, the mixture is suitable for direct compression into tablets using pressures of from about 2000 to about 4000 psi.

Targeting the same average particle size for all formulation ingredients is effective for producing a formulation that mixes well and resists separation when the formulation flows. Larger particle sizes, at least 250 microns on average, of all ingredients are preferred to produce a chewable tablet with acceptable mouthfeel.

Method of Use

The compositions of the present invention are useful for the treatment of gastrointestinal disorders. These formulations can be used alone or in combination with other active substances for the treatment of constipation and Taxation and for normalizing bowel function. The compositions of the present invention may also be effective for providing more complete evacuation of the bowel and thereby rendering a detoxifying effect. In addition, the compositions are useful for reducing human serum cholesterol and controlling blood glucose levels in diabetics and may be used alone or in conjunction with other actives substances.

The compositions of the present invention may be prepared in any solid dosage form known in the art. Alternatively, compositions may be utilized in powdered form and incorporated into various food products. In one embodiment the compositions may be tabletted for use as a swallowable or chewable tablet. In one embodiment, the compositions of the present invention are directly compressed into solid oral dosage forms suitable for chewing, such as chewable tablets, for consumption by the consumer. Each tablet may comprise from about 100 mg to about 5000 mg of gel-forming polysaccharide, in one embodiment a chewable tablet may comprise from about 1000 mg to about 1500 mg of gel-forming polysaccharide. The gel-forming polysaccharide should be administered at a level of at least about 2 grams, from about 1 to about 3 times per day.
 

Claim 1 of 37 Claims

1. A chewable tablet comprising:

a) from about 10% to about 90% of a gel-forming polysaccharide derived from psyllium seed husk, said gel-forming polysaccharide comprising xylose and arabinose, wherein the xylose to arabinose dry weight ratio is at least about 3:1; and

b) from about 10% to about 90% of a fast dissolving excipient selected from the group consisting of sorbitol, isomalt and mixtures thereof, wherein the chewable tablet further comprises a coating.

____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.

 

 

     
[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]