Internet for Pharmaceutical and Biotech Communities
| Newsletter | Advertising |



Outsourcing Guide

Cont. Education


Training Courses

Web Seminars


Buyer's Guide

Home Page

Pharm Patents /

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters


Pharm/Biotech Events


Advertiser Info

Newsletter Subscription

Web Links


Site Map



  Pharmaceutical Patents  


Title:  Method for treating disorders and diseases treatable with human fibroblast interferon
United States Patent: 
April 15, 2008

El-Tayar; Nabil (Milton, MA), Roberts; Michael J. (Madison, AL), Harris; Milton (Hunstville, AL), Sawlivich; Wayne (Wilmington, MA)
Laboratoires Seronosa (Coinsins, Vaud, CH)
. No.: 
 August 28, 2003


Pharm/Biotech Jobs


PEG-IFN-.beta. conjugates, where a PEG moiety is covalently bound to Cys.sup.17 of human IFN-.beta., are produced by a process of site specific PEGylation with a thiol reactive PEGylating agent. A pharmaceutical composition and a method for treating infections, tumors and autoimmune and inflammatory diseases are also provided. The invention further relates to a method for the stepwise attachment of PEG moieties in series to a polypeptide, and more particularly to IFN-.beta..

Description of the Invention


The invention relates to polyol-IFN-.beta. conjugates wherein a polyol unit is covalently bound to Cys.sup.17. Further objects of the present invention are the process for their site-specific production as well as their use in the therapy, prognosis or diagnosis of bacterial infections, viral infections, autoimmune diseases and inflammatory diseases. The present invention further relates to a method for the stepwise attachment of two or more PEG moieties to a polypeptide.


Human fibroblast interferon (IFN-.beta.) has antiviral activity and can also stimulate natural killer cells against neoplastic cells. It is a polypeptide of about 20,000 Da induced by viruses and double-stranded RNAs. From the nucleotide sequence of the gene for fibroblast interferon, cloned by recombinant DNA technology, Derynk et al. (Nature, 285:542-547, 1980) deduced the complete amino acid sequence of the protein. It is 166 amino acid long.

Shepard et al. (Nature, 294:563-565, 1981) described a mutation at base 842 (Cys-Tyr at position 141) that abolished its anti-viral activity, and a variant clone with a deletion of nucleotides 1119-1121.

Mark et al. (Proc. Natl. Acad. Sci. U.S.A., 81(18):5662-5666, 1984) inserted an artificial mutation by replacing base 469 (T) with (A) causing an amino acid switch from Cys--Ser at position 17. The resulting IFN-.beta. was reported to be as active as the `native` IFN-.beta. and stable during long-term storage ( C.).

Covalent attachment of the hydrophilic polymer polyethylene glycol, (PEG), also known as polyethylene oxide, (PEO), to molecules has important applications in biotechnology and medicine. In its most common form, PEG is a linear polymer having hydroxyl groups at each terminus: HO--CH.sub.2--CH.sub.2O(CH.sub.2CH.sub.2O).sub.nCH.sub.2CH.sub.2--OH

This formula can be represented in brief as HO--PEG--OH, where it is meant that --PEG-- represents the polymer backbone without the terminal groups: "--PEG--" means "--CH.sub.2CH.sub.2O(CH.sub.2CH.sub.2O).sub.nCH.sub.2CH.sub.2--

PEG is commonly used as methoxy-PEG--OH, (m-PEG), in which one terminus is the relatively inert methoxy group, while the other terminus is a hydroxyl group that is subject to chemical modification. CH.sub.3O--(CH.sub.2CH.sub.2O).sub.n--CH.sub.2CH.sub.2--OH

Branched PEGs are also in common use. The branched PEGs can be represented as R(--PEG--OH).sub.m in which R represents a central core moiety such as pentaerythritol or glycerol, and m represents the number of branching arms. The number of branching arms (m) can range from three to a hundred or more. The hydroxyl groups are subject to chemical modification.

Another branched form, such as that described in PCT patent application WO 96/21469, has a single terminus that is subject to chemical modification. This type of PEG can be represented as (CH.sub.3O--PEG--).sub.pR--X, whereby p equals 2 or 3, R represents a central core such as lysine or glycerol, and X represents a functional group such as carboxyl that is subject to chemical activation. Yet another branched form, the "pendant PEG", has reactive groups, such as carboxyl, along the PEG backbone rather than at the end of PEG chains.

In addition to these forms of PEG, the polymer can also be prepared with weak or degradable linkages in the backbone. For example, Harris has shown in U.S. patent application Ser. No. 06/026,716 that PEG can be prepared with ester linkages in the polymer backbone that are subject to hydrolysis. This hydrolysis results in cleavage of the polymer into fragments of lower molecular weight, according to the reaction scheme: --PEG--CO.sub.2--PEG--+H.sub.2O---PEG--CO.sub.2H+HO--PEG--

According to the present invention, the term polyethylene glycol or PEG is meant to comprise all the above described derivatives.

The copolymers of ethylene oxide and propylene oxide are closely related to PEG in their chemistry, and they can be used instead of PEG in many of its applications. They have the following general formula: HO--CH.sub.2CHRO(CH.sub.2CHRO).sub.nCH.sub.2CHR--OH wherein R is H or CH.sub.3.

PEG is a useful polymer having the property of high water solubility as well as high solubility in many organic solvents. PEG is also non-toxic and non-immunogenic. When PEG is chemically attached (PEGylation) to a water insoluble compound, the resulting conjugate generally is water soluble, as well as soluble in many organic solvents.

PEG-protein conjugates are currently being used in protein replacement therapies and for other therapeutic uses. For example, PEGylated adenosine deaminase (ADAGEN.RTM.) is being used to treat severe combined immunodeficiency disease (SCIDS), PEGylated L-asparaginase (ONCAPSPAR.RTM.) is being used to treat acute lymphoblastic leukemia (ALL), and PEGylated interferon-.alpha. (INTRON(R) A) is in Phase III trials for treating hepatitis C.

For a general review of PEG-protein conjugates with clinical efficacy see N. L. Burnham, Am. J. Hosp. Pharm., 15:210-218, 1994.

A variety of methods have been developed to PEGylate proteins. Attaching PEG to reactive groups found on the protein is typically done utilizing electrophilically activated PEG derivatives. Attaching PEG to the .alpha.- and .epsilon.-amino groups found on lysine residues and the N-terminus results in a conjugate consisting of a mixture of products.

Generally, such conjugates consist of a population of the several PEG molecules attached per protein molecule ("PEGmers") ranging from zero to the number of amino groups in the protein. For a protein molecule that has been singly modified, the PEG unit may be attached at a number of different amine sites.

This type of non-specific PEGylation has resulted in a number of conjugates that become almost inactive. Reduction of activity is typically caused by shielding the protein's active binding domain as is the case with many cytokines and antibodies. For example, Katre et al. in U.S. Pat. No. 4,766,106 and U.S. Pat. No. 4,917,888 describe the PEGylation of IFN-.beta. and IL-2 with a large excess of methoxy-polyethylene glycolyl N-succinimidyl glutarate and methoxy-polyethylene glycolyl N-succinimidyl succinate. Both proteins were produced in microbial host cells, which allowed the site-specific mutation of the free cysteine to a serine. The mutation was necessary in microbial expression of IFN-.beta. to facilitate protein folding. In particular, the IFN-.beta. used in these experiments is the commercial product Betaseron.RTM., in which Cys.sup.17 residue is replaced with a serine. Additionally, the absence of glycosylation reduced its solubility in aqueous solution. Non-specific PEGylation resulted in increased solubility, but a major problem was the reduced level of activity and yield.

European Patent Application EP 593 868, entitled PEG-Interferon Conjugates, describes the preparation of PEG-IFN-.alpha. conjugates. However, the PEGylation reaction is not site-specific, and therefore a mixture of positional isomers of PEG-IFN-.alpha. conjugates are obtained (see also Monkarsh et al., ACS Symp. Ser., 680:207-216, 1997).

Kinstler et al. in European Patent Application EP 675 201 demonstrated the selective modification of the N-terminal residue of megakaryocyte growth and development factor (MGDF) with mPEG-propionaldehyde. This allowed for reproducible PEGylation and pharmacokinetics from lot to lot. Gilbert et al. in U.S. Pat. No. 5,711,944 demonstrated that PEGylation of IFN-.alpha. with an optimal level of activity could be produced. In this instance a laborious purification step was needed to obtain the optimal conjugate.

The majority of cytokines, as well as other proteins, do not possess a specific PEG attachment site and, apart from the examples mentioned above, it is very likely that some of the isomers produced through the PEGylation reaction be partially or totally inactive, thus causing a loss of activity of the final mixture.

Site-specific mono-PEGylation is thus a desirable goal in the preparation of such protein conjugates.

Woghiren et al. in Bioconjugate Chem., 4(5):314-318, 1993, synthesized a thiol-selective PEG derivative for such a site-specific PEGylation. A stable. thiol-protected PEG derivative in the form of an parapyridyl disulfide reactive group was shown to specifically conjugate to the free cysteine in the protein, papain. The newly formed disulfide bond between papain and PEG could be cleaved under mild reducing conditions to regenerate the native protein.

Citation of any document herein is not intended as an admission that such document is pertinent prior art, or considered material to the patentability of any claim of the present application. Any statement as to content or a date of any document is based on the information available to applicants at the time of filing and does not constitute an admission as to the correctness of such a statement.


In the present invention, polyol-IFN-.beta. conjugates, and particularly PEG-IFN-.beta. conjugates, are provided wherein a polyol unit is covalently bound to Cys.sup.17. The specific conjugation is obtained by allowing a thiol-reactive polyol agent to react with the Cys.sup.17 residue in IFN-.beta.. Such conjugates are expected to show increased effectiveness in vivo. The aim is to obtain increased solubility at neutral pH, increased stability (decreased aggregation), decreased immunogenicity, and no loss of activity with respect to `native` IFN-.beta.. The results of such conjugation would decrease the number of doses for an intended effect, simplify and stabilize the formulation of a pharmaceutical composition, and possibly increase the long-term efficacy.

The present invention further provides a method for the stepwise attachment of PEG moieties in series to a polypeptide.


The present invention is based on the discovery that the attachment of a polyol moiety, more specifically a PEG moiety, to the Cys.sup.17 residue of human IFN-.beta. unexpectedly increased (or at least retained and did not result in a decrease) the IFN-.beta. biological activity from that of native human interferon-.beta.. Thus, not only does IFN-.beta. with a polyol moiety attached to the Cys.sup.17 residue exhibit the same or increased IFN-.beta. biological activity but this polyol-IFN-.beta. conjugate also provides the desirable properties conferred by the polyol moiety, such as increased solubility.

"IFN-.beta.", as used herein, means human fibroblast interferon, as obtained by isolation from biological fluids or as obtained by DNA recombinant techniques from prokaryotic or eukaryotic host cells as well as its salts, functional derivatives, precursors and active fractions, provided that they contain the cysteine residue appearing at position 17 in the naturally occurring form.

The polyol moiety in the polyol-IFN-.beta. conjugate according to the present invention can be any water-soluble mono- or bifunctional poly(alkylene oxide) having a linear or branched chain. Typically, the polyol is a poly(alkylene glycol) such as poly(ethylene glycol) (PEG). However, those of skill in the art will recognize that other polyols, such as, for example poly (propylene glycol) and copolymers of polyethylene glycol and polypropylene glycol, can be suitably used.

As used herein, the term "PEG moiety" is intended to include, but is not limited to, linear and branched PEG, methoxy PEG, hydrolytically or enzymatically degradable PEG, pendant PEG, dendrimer PEG, copolymers of PEG and one or more polyols, and copolymers of PEG and PLGA (poly(lactic/glycolic acid)).

The definition "salts" as used herein refers both to salts of the carboxyl-groups and to the salts of the amino functions of the compound obtainable through known methods. The salts of the carboxyl-groups include inorganic salts as, for example, sodium, potassium, calcium salts and salts with organic bases as those formed with an amine as triethanolamine, arginine or lysine. The salts of the amino groups included for example, salts with inorganic acids as hydrochloric acid and with organic acids as acetic acid.

The definition "functional derivatives" as herein used refers to derivatives which can be prepared from the functional groups present on the lateral chains of the amino acid moieties or on the terminal N- or C-groups according to known methods and are included in the present invention when they are pharmaceutically acceptable, i.e., when they do not destroy the protein activity or do not impart toxicity to the pharmaceutical compositions containing them. Such derivatives include for example esters or aliphatic amides of the carboxyl-groups and N-acyl derivatives of free amino groups or O-acyl derivatives of free hydroxyl-groups and are formed with acyl-groups as for example alcanoyl- or aroyl-groups.

The "precursors" are compounds which are converted into IFN-.beta. in the human or animal body.

As "active fractions" of the protein, the present invention refers to any fragment or precursor of the polypeptidic chain of the compound itself, alone or in combination with related molecules or residues bound to it, for example, residues of sugars or phosphates, or aggregates of the polypeptide molecule when such fragments or precursors show the same activity of IFN-.beta. as medicament.

The conjugates of the present invention can be prepared by any of the methods known in the art. According to an embodiment of the invention, IFN-.beta. is reacted with the PEGylating agent in a suitable solvent and the desired conjugate is isolated and purified, for example, by applying one or more chromatographic methods.

"Chromatographic method" means any technique that is used to separate the components of a mixture by their application on a support (stationary phase) through which a solvent (mobile phase) flows. The separation principles of the chromatography are based on the different physical nature of stationary and mobile phase.

Some particular types of chromatographic methods, which are well-known in the literature, include: liquid, high pressure liquid, ion exchange, absorption, affinity, partition, hydrophobic, reversed phase, gel filtration, ultrafiltration or thin-layer chromatography.

The "thiol-reactive PEGylating agent", as used in the present application, means any PEG derivative which is capable of reacting with the thiol group of the cysteine residue. It can be, for example, PEG containing a functional group such as orthopyridyl disulfide, vinylsulfone, maleimide, iodoacetimide, and others. According to a preferred embodiment of the present invention, the thiol-reactive PEGylating agent is the orthopyridyl disulfide (OPSS) derivative of PEG.

The PEGylating agent is used in its mono-methoxylated form where only one terminus is available for conjugation, or in a bifunctional form where both termini are available for conjugation, such as for example in forming a conjugate with two IFN-.beta. covalently attached to a single PEG moiety. It has preferably a molecular weight between 500 and 100,000.

A typical reaction scheme for the preparation of the conjugates of the invention is presented below -- see Original Patent.

The second line of the above scheme reports a method for cleaving the PEG-protein linkage. The mPEG-OPSS derivative is highly selective for free sulphydryl groups and reacts rapidly under acidic pH conditions where the IFN-.beta. is stable. The high selectivity can be demonstrated from the reduction of the conjugate to the native form of IFN-.beta. and PEG.

The disulfide bond that is produced between the protein and PEG moieties has been shown to be stable in the circulation, but it can be reduced upon entering the cell environment. Therefore it is expected that this conjugate, which does not enter the cell, will be stable in the circulation until it is cleared.

It should be noted that the above reaction is site-specific because the other two Cys residues appearing at positions 31 and 141 in the naturally occurring form of human IFN-.beta. do not react with the thiol-reactive PEGylating agent since they form a disulfide bridge.

The present invention is also directed to a method for the stepwise attachment of two or more PEG moieties to a polypeptide. This method is based upon the recognition that a low molecular weight activated PEG reacts more completely with a sterically hindered reaction site on a protein than does a high molecular weight activated PEG. PEG-modification of expensive therapeutic proteins must be cost effective in order for the production of the PEG conjugate to be practical. In addition, in order to reduce glomerular filtration and optimize the pharmacological properties of the PEG-protein conjugate, the conjugate should have an effective size equivalent to that of a protein with a molecular weight of 70 kDa. This means that for a site specific modification where one PEG will be attached, a PEG derivative having a molecular weight of greater than 20 kDa is preferably attached. If the site of modification is sterically crowded, the reactive group on the large PEG moiety may have difficulty reaching the modification site and thus will lead to low yields. A preferred method of PEGylating a polypeptide according to the present invention increases the yield of site-specific PEGylation by first attaching a small hetero or homobifunctional PEG moiety that, due to its relatively smaller size, can react with sterically crowded sites. Subsequent attachment of a large molecular weight PEG derivative to the small PEG results in high yield of the desired PEGylated protein.

The method for stepwise attachment of two or more PEG moieties in series to a polypeptide according to the present invention includes attaching a low molecular weight heterbifunctional or homobifunctional PEG moiety first to the polypeptide and then attaching a monofunctional or bifunctional PEG moiety to the free terminus of the low molecular weight PEG moiety that is attached to the polypeptide. Following the stepwise attachment of two or more PEG moieties in series to a polypeptide, which polypeptide is preferably IFN-.beta. and where Cys.sup.17, located in a sterically crowded site, is the preferred site of PEG attachment, the PEG-polypeptide conjugate can be purified using one or more of the purification techniques such as ion exchange chromatography, size exclusion chromatography, hydrophobic interaction chromatography, affinity chromatography, and reverse phase chromatography.

The low molecular weight PEG moiety has the formula: W--CH.sub.2CH.sub.2O(CH.sub.2CH.sub.2O).sub.nCH.sub.2CH.sub.2--X, where W and X are groups that independently react with an amine, sulfhydryl, carboxyl or hydroxyl functional group to attach the low molecular weight PEG moiety to the polypeptide. W and X are preferably independently selected from orthopyridyl disulfide, maleimides, vinyl sulfones, iodoacetamides, amines, thiols, carboxyls, active esters, benzotriazole carbonates, p-nitrophenol carbonates, isocyanates, and biotin. The low molecular weight PEG moiety preferably has a molecular weight in the range of about 100 to 5,000 daltons.

The monofunctional or bifunctional PEG moiety for attachment to the free terminus of a low molecular weight PEG that is attached to the polypeptide has preferably a molecular weight in the range of about 100 daltons to 200 kDa and is preferably a methoxy PEG, branched PEG, hydrolytically or enzymatically degradable PEG, pendant PEG, or dendrimer PEG. The monofunctional or bifunctional PEG furthermore has the formula: Y--CH.sub.2CH.sub.2O(CH.sub.2CH.sub.2O).sub.MCH.sub.2CH.sub.2--Z where Y is reactive to a terminal group on the free terminus of the low molecular weight PEG moiety that is attached to the polypeptide and Z is --OCH.sub.3 or a group reactive with to form a bifunctional conjugate.

The PEG-polypeptide conjugate produced by the above method for stepwise attachment of two or more PEG moieties can be used to produce a medicament or pharmaceutical composition for treating diseases or disorders for which the polypeptides is effective as an active ingredient.

Another object of the present invention is to provide the conjugates in substantially purified form in order for them to be suitable for use in pharmaceutical compositions, as active ingredient for the treatment, diagnosis or prognosis of bacterial and viral infections as well as autoimmune, inflammatory diseases and tumors. Such pharmaceutical compositions represent a further object of the present invention.

Non-limiting examples of the above-mentioned diseases include: septic shock, AIDS, rheumatoid arthritis, lupus erythematosus and multiple sclerosis.

Further embodiments and advantages of the invention will be evident in the following description.

An embodiment of the invention is the administration of a pharmacologically active amount of the conjugates of the invention to subjects at risk of developing one of the diseases reported above or to subjects already showing such pathologies.

Any route of administration compatible with the active. principle can be used. Parenteral administration, such as subcutaneous, intramuscular or intravenous injection is preferred. The dose of the active ingredient to be administered depends on the basis of the medical prescriptions according to age, weight and the individual response of the patient.

The dosage can be between 10 .mu.g and 1 mg daily for an average body weight of 75 kg, and the preferable daily dose is between 20 .mu.g and 200 .mu.g.

The pharmaceutical composition for parenteral administration can be prepared in an injectable form comprising the active principle and a suitable vehicle. Vehicles for the parenteral administration are well known in the art and include, for example, water, saline solution, Ringer solution and/or dextrose. The vehicle can contain small amounts of excipients in order to maintain the stability and isotonicity of the pharmaceutical preparation. The preparation of the solutions can be carried out according to the ordinary modalities.

Claim 1 of 19 Claims

1. A method for treating viral infections, lupus erythematosus, or rheumatoid arthritis or for stimulating natural killer cells against neoplastic cells, comprising administering an effective amount of a polyol-human fibroblast interferon (interferon-.beta.) conjugate having a polyol moiety covalently bound to Cys.sup.17 of human fibroblast interferon to a subject in need thereof.


If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.



[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]