Internet for Pharmaceutical and Biotech Communities
| Newsletter | Advertising |
 
 
 

  

Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 
   

 

  Pharmaceutical Patents  

 

Title:  Neural proteins as biomarkers for traumatic brain injury
United States Patent: 
7,396,654
Issued: 
July 8, 2008

Inventors: 
Hayes; Ronald (Gainesville, FL), Wang; Kevin Ka-Wang (Gainesville, FL), Liu; Ming Chen (Gainesville, FL), Oli; Monika (Gainesville, FL)
Assignee: 
University of Florida Research Foundation, Inc. (Gainesville, FL), Banyan Biomarkers, Inc. (Alachua, FL)
Appl. No.: 
11/107,248
Filed: 
April 15, 2005


 

Web Seminars -- Pharm/Biotech/etc.


Abstract

The present invention identifies biomarkers that are diagnostic of nerve cell injury and/or neuronal disorders. Detection of different biomarkers of the invention are also diagnostic of the degree of severity of nerve injury, the cell(s) involved in the injury, and the subcellular localization of the injury.

Description of the Invention

SUMMARY

The present invention provides neuronal protein markers that are differentially present in the samples of patients suffering from neural injury and/or neuronal disorders as compared to samples of control subjects. The present invention also provides sensitive and quick methods and kits that can be used as an aid for diagnosis of neural injury and/or neuronal disorders by detecting these markers. The measurement of these markers, alone or in combination, in patient samples provides information that a diagnostician can correlate with a probable diagnosis of the extent of neural injury such as in traumatic brain injury (TBI) and stroke.

In a preferred embodiment, the invention provides biomarkers that are indicative of traumatic brain injury, neuronal damage, neural disorders, brain damage, neural damage due to drug or alcohol addiction, diseases associated with the brain or nervous system, such as the central nervous system. Preferably, the biomarkers are proteins, fragments or derivatives thereof, and are associated with neuronal cells, brain cells or any cell that is present in the brain and central nervous system.

In a preferred embodiment the biomarkers are preferably neural proteins, peptides, fragments or derivatives thereof. Examples of neural proteins, include, but are not limited to axonal proteins, amyloid precursor protein, dendritic proteins, somal proteins, presynaptic proteins, post-synaptic proteins and neural nuclear proteins.

In another preferred embodiment the biomarkers are selected from at least one protein, peptide, variant or fragment thereof, such as those proteins listed in Table 1 (see Original Patent). For example, Axonal Proteins: .alpha. II spectrin (and SPDB)-1, NF-68 (NF-L)-2, Tau-3, .alpha. II, III spectrin, NF-200 (NF-H), NF-160 (NF-M), Amyloid precursor protein, .alpha. internexin; Dendritic Proteins: beta III-tubulin-1, p24 microtubule-associated protein-2, alpha-Tubulin (P02551), beta-Tubulin (P04691), MAP-2A/B-3, MAP-2C-3, Stathmin-4, Dynamin-1 (P21575), Phocein, Dynactin (Q13561), Vimentin (P31000), Dynamin, Profilin, Cofilin 1,2; Somal Proteins: UCH-L1 (Q00981)-1, Glycogen phosphorylase-BB-2, PEBP (P31044), NSE (P07323), CK-BB (P07335), Thy 1.1, Prion protein, Huntingtin, 14-3-3 proteins (e.g. 14-3-3-epsolon (P42655)), SM22-.alpha., Calgranulin AB, alpha-Synuclein (P37377), beta-Synuclein (Q63754), HNP 22; Neural nuclear proteins: NeuN-1, S/G(2) nuclear autoantigen (SG2NA), Huntingtin; Presynaptic Proteins: Synaptophysin-1, Synaptotagmin (P21707), Synaptojanin-1 (Q62910), Synaptojanin-2, Synapsin1 (Synapsin-Ia), Synapsin2 (Q63537), Synapsin3, GAP43, Bassoon(NP.sub.--003449), Piccolo (aczonin) (NP.sub.--149015), Syntaxin, CRMP1, 2, Amphiphysin-1 (NP.sub.--001626), Amphiphysin-2 (NP.sub.--647477); Post-Synaptic Proteins: PSD95-1, NMDA-receptor (and all subtypes)-2, PSD93, AMPA-kainate receptor (all subtypes), mGluR (all subtypes), Calmodulin dependent protein kinase II (CAMPK)-alpha, beta, gamma, CaMPK-IV, SNAP-25, a-/b-SNAP; Myelin-Oligodendrocyte: Myelin basic protein (MBP) and fragments, Myelin proteolipid protein (PLP), Myelin Oligodendrocyte specific protein (MOSP), Myelin Oligodendrocyte glycoprotein (MOG), myelin associated protein (MAG), Oligodendrocyte NS-1 protein; Glial Protein Biomarkers: GFAP (P47819), Protein disulfide isomerase (PDI)--P04785, Neurocalcin delta, S100beta; Microglia protein Biomarkers: Iba1, OX-42, OX-8, OX-6, ED-1, PTPase (CD45), CD40, CD68, CD11b, Fractalkine (CX3CL1) and Fractalkine receptor (CX3CR1), 5-d-4 antigen; Schwann cell markers: Schwann cell myelin protein; Glia Scar: Tenascin; Hippocampus: Stathmin, Hippocalcin, SCG10; Cerebellum: Purkinje cell protein-2 (Pcp2), Calbindin D9K, Calbindin D28K (NP.sub.--114190), Cerebellar CaBP, spot 35; Cerebrocortex: Cortexin-1 (P60606), H-2Z1 gene product; Thalamus: CD15 (3-fucosyl-N-acetyl-lactosamine) epitope; Hypothalamus: Orexin receptors (OX-1R and OX-2R)-appetite, Orexins (hypothalamus-specific peptides); Corpus callosum: MBP, MOG, PLP, MAG; Spinal Cord: Schwann cell myelin protein; Striatum: Striatin, Rhes (Ras homolog enriched in striatum); Peripheral ganglia: Gadd45a; Peripherial nerve fiber(sensory+motor): Peripherin, Peripheral myelin protein 22 (AAH91499); Other Neuron-specific proteins: PH8 (S Serotonergic Dopaminergic, PEP-19, Neurocalcin (NC), a neuron-specific EF-hand Ca.sup.2+-binding protein, Encephalopsin, Striatin, SG2NA, Zinedin, Recoverin, Visinin; Neurotransmitter Receptors: NMDA receptor subunits (e.g. NR1A2B), Glutamate receptor subunits (AMPA, Kainate receptors (e.g. GluR1, GluR4), beta-adrenoceptor subtypes (e.g. beta(2)), Alpha-adrenoceptors subtypes (e.g. alpha(2c)), GABA receptors (e.g. GABA(B)), Metabotropic glutamate receptor (e.g. mGluR3), 5-HT serotonin receptors (e.g. 5-HT(3)), Dopamine receptors (e.g. D4), Muscarinic Ach receptors (e.g. M1), Nicotinic Acetylcholine Receptor (e.g. alpha-7); Neurotransmitter Transporters: Norepinephrine Transporter (NET), Dopamine transporter (DAT), Serotonin transporter (SERT), Vesicular transporter proteins (VMAT1 and VMAT2), GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT), Glutamate Transporter (e.g. GLT1), Vesicular acetylcholine transporter, Vesicular Glutamate Transporter 1, [VGLUT1; BNPI] and VGLUT2, Choline transporter, (e.g. CHT1); Cholinergic Biomarkers: Acetylcholine Esterase, Choline acetyltransferase [ChAT]; Dopaminergic Biomarkers: Tyrosine Hydroxylase (TH), Phospho-TH, DARPP32; Noradrenergic Biomarkers: Dopamine beta-hydroxylase (DbH); Adrenergic Biomarkers: Phenylethanolamine N-methyltransferase (PNMT); Serotonergic Biomarkers: Tryptophan Hydroxylase (TrH); Glutamatergic Biomarkers: Glutaminase, Glutamine synthetase; GABAergic Biomarkers: GABA transaminase [GABAT]), GABA-B-R2.

In another preferred embodiment the biomarkers are from at least two or more proteins, peptides, variants or fragments thereof, such as those proteins listed in Table 1 (see Original Patent). For example, Axonal Proteins: .alpha. II spectrin (and SPDB)-1, NF-68 (NF-L)-2, Tau-3, .alpha. II, III spectrin, NF-200 (NF-H), NF-160 (NF-M), Amyloid precursor protein, a internexin; Dendritic Proteins: beta III-tubulin-1, p24 microtubule-associated protein-2, alpha-Tubulin (P02551), beta-Tubulin (P04691), MAP-2A/B-3, MAP-2C-3, Stathmin-4, Dynamin-1 (P21575), Phocein, Dynactin (Q13561), Vimentin (P31000), Dynamin, Profilin, Cofilin 1,2; Somal Proteins: UCH-L1 (Q00981)-1, Glycogen phosphorylase-BB-2, PEBP (P31044), NSE (P07323), CK-BB (P07335), Thy 1.1, Prion protein, Huntingtin, 14-3-3 proteins (e.g. 14-3-3-epsolon (P42655)), SM22-.alpha., Calgranulin AB, alpha-Synuclein (P37377), beta-Synuclein (Q63754), HNP 22; Neural nuclear proteins: NeuN-1, S/G(2) nuclear autoantigen (SG2NA), Huntingtin; Presynaptic Proteins: Synaptophysin-1, Synaptotagmin (P21707), Synaptojanin-1 (Q62910), Synaptojanin-2, Synapsin1 (Synapsin-Ia), Synapsin2 (Q63537), Synapsin3, GAP43, Bassoon(NP.sub.--003449), Piccolo (aczonin) (NP.sub.--149015), Syntaxin, CRMP1, 2, Amphiphysin-1 (NP.sub.--001626), Amphiphysin-2 (NP.sub.--647477); Post-Synaptic Proteins: PSD95-1, NMDA-receptor (and all subtypes)-2, PSD93, AMPA-kainate receptor (all subtypes), mGluR (all subtypes), Calmodulin dependent protein kinase II (CAMPK)-alpha, beta, gamma, CaMPK-IV, SNAP-25, a-/b-SNAP; Myelin-Oligodendrocyte: Myelin basic protein (MBP) and fragments, Myelin proteolipid protein (PLP), Myelin Oligodendrocyte specific protein (MOSP), Myelin Oligodendrocyte glycoprotein (MOG), myelin associated protein (MAG), Oligodendrocyte NS-1 protein; Glial Protein Biomarkers: GFAP (P47819), Protein disulfide isomerase (PDI)--P04785, Neurocalcin delta, S100beta; Microglia protein Biomarkers: Iba1, OX-42, OX-8, OX-6, ED-1, PTPase (CD45), CD40, CD68, CD11b, Fractalkine (CX3CL1) and Fractalkine receptor (CX3CR1), 5-d-4 antigen; Schwann cell markers: Schwann cell myelin protein; Glia Scar: Tenascin; Hippocampus: Stathmin, Hippocalcin, SCG10; Cerebellum: Purkinje cell protein-2 (Pcp2), Calbindin D9K, Calbindin D28K (NP.sub.--114190), Cerebellar CaBP, spot 35; Cerebrocortex: Cortexin-1 (P60606), H-2Z1 gene product; Thalamus: CD15 (3-fucosyl-N-acetyl-lactosamine) epitope; Hypothalamus: Orexin receptors (OX-1R and OX-2R)-appetite, Orexins (hypothalamus-specific peptides); Corpus callosum: MBP, MOG, PLP, MAG; Spinal Cord: Schwann cell myelin protein; Striatum: Striatin, Rhes (Ras homolog enriched in striatum); Peripheral ganglia: Gadd45a; Peripherial nerve fiber(sensory+motor): Peripherin, Peripheral myelin protein 22 (AAH91499); Other Neuron-specific proteins: PH8 (S Serotonergic Dopaminergic, PEP-19, Neurocalcin (NC), a neuron-specific EF-hand Ca.sup.2+-binding protein, Encephalopsin, Striatin, SG2NA, Zinedin, Recoverin, Visinin; Neurotransmitter Receptors: NMDA receptor subunits (e.g. NR1A2B), Glutamate receptor subunits (AMPA, Kainate receptors (e.g. GluR1, GluR4), beta-adrenoceptor subtypes (e.g. beta(2)), Alpha-adrenoceptors subtypes (e.g. alpha(2c)), GABA receptors (e.g. GABA(B)), Metabotropic glutamate receptor (e.g. mGluR3), 5-HT serotonin receptors (e.g. 5-HT(3)), Dopamine receptors (e.g. D4), Muscarinic Ach receptors (e.g. M1), Nicotinic Acetylcholine Receptor (e.g. alpha-7); Neurotransmitter Transporters: Norepinephrine Transporter (NET), Dopamine transporter (DAT), Serotonin transporter (SERT), Vesicular transporter proteins (VMAT1 and VMAT2), GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT), Glutamate Transporter (e.g. GLT1), Vesicular acetylcholine transporter, Vesicular Glutamate Transporter 1, [VGLUT1; BNPI] and VGLUT2, Choline transporter, (e.g. CHT1); Cholinergic Biomarkers: Acetylcholine Esterase, Choline acetyltransferase [ChAT]; Dopaminergic Biomarkers: Tyrosine Hydroxylase (TH), Phospho-TH, DARPP32; Noradrenergic Biomarkers: Dopamine beta-hydroxylase (DbH); Adrenergic Biomarkers: Phenylethanolamine N-methyltransferase (PNMT); Serotonergic Biomarkers: Tryptophan Hydroxylase (TrH); Glutamatergic Biomarkers: Glutaminase, Glutamine synthetase; GABAergic Biomarkers: GABA transaminase [GABAT]), GABA-B-R2.

In another preferred embodiment, the biomarkers comprise at least one biomarker from each neural cell type. The composition of biomarkers is diagnostic of neural injury, damage and/or neural disorders. The composition comprises: .delta. 11 spectrin, SPDB-1, NF-68, NF-L-2, Tau-3, .beta.III-tubulin-1, p24 microtubule-associated protein-2, UCH-L1 (Q00981)-1, Glycogen phosphorylase-BB-2, NeuN-1, Synaptophysin-1, synaptotagmin (P21707), Synaptojanin-1 (Q62910), Synaptojanin-2, PSD95-1, NMDA-receptor-2 and subtypes, myelin basic protein (MBP) and fragments, GFAP (P47819), Iba1, OX-42, OX-8, OX-6, ED-1, Schwann cell myelin protein, tenascin, stathmin, Purkinje cell protein-2 (Pcp2), Cortexin-1 (P60606), Orexin receptors (OX-1R, OX-2R), Striatin, Gadd45a, Peripherin, peripheral myelin protein 22 (AAH91499), and Neurocalcin (NC).

In another preferred embodiment an expanded panel of biomarkers are used to provide highly enriched information of mechanism of injury, modes of cell death (necrosis versus apoptosis), sites of injury, sites and status of different cell types in the nervous system and enhanced diagnosis (better selectivity and specificity). This invention is an important and significant improvement over existing technologies focused on small panel (e.g. a four-marker panel:-MBP-Thrombomodulin-S100B-NSE from Syn X Pharma (Mississauga, Canada)- or single markers (e.g. S100B from DiaSorin (Sweden)).

In another preferred embodiment the biomarkers are selected to distinguish between different host anatomical regions. For example, at least one biomarker can be selected from neural subcellular protein biomarkers, nervous system anatomical markers such as hippocampus protein biomarkers and cerebellum protein biomarkers. Examples of neural subcellular protein biomarkers are NF-200, NF-160, NF-68. Examples of hippocampus protein biomarkers are SCG10, stathmin. An example of a cerebellum protein biomarker is Purkinje cell protein-2 (Pcp2).

In another preferred embodiment the biomarkers are selected to distinguish between injury at the cellular level, thereby detecting which cell type has been injured. For example at least one biomarker protein is selected from a representative panel of protein biomarkers specific for that cell type. Examples for biomarkers specific for cell types include myelin-oligodendrocyte biomarkers such as myelin basic protein (MBP), myelin proteolipid protein (PLP), myelin oligodendrocyte specific protein (MOSP), oligodendrocyte NS-1 protein, myelin oligodendrocyte glycoprotein (MOG). Examples of biomarkers specific for Schwann cells include, but not limited to Schwann cell myelin protein. Examples of Glial cell protein biomarkers include, but not limited to GFAP (protein accession number P47819), protein disulfide isomerase (PDI)--P04785. Thus, by detecting one or more specific biomarkers the specific cell types that have been injured can be determined.

In another preferred embodiment, biomarkers specific for different subcellular structures of a cell can be used to determine the subcellular level of injury. Examples include but not limited to neural subcellular protein biomarkers such as, NF-200, NF-160, NF-68; dendritic biomarkers such as for example, alpha-tubulin (P02551), beta-tubulin (P04691), MAP-2A/B, MAP-2C, Tau, Dynamin-1 (P212575), Phoecin, Dynactin (Q13561), p24 microtubule-associated protein, vimentin (P131000); somal proteins such as for example, UCH-L1 (Q00981), PEBP (P31044), NSE (P07323), CK-BB (P07335), Thy 1.1, prion protein, 14-3-3 proteins; neural nuclear proteins, such as for example S/G(2) nuclear autoantigen (SG2NA), NeuN. Thus, detection of specific biomarkers will determine the extent and subcellular location of injury.

In another preferred embodiment, biomarkers specific for different anatomical regions, different cell types, and/or different subcellular structures of a cell are selected to provide information as to the location of anatomical injury, the location of the injured cell type, and the location of injury at a subcellular level. Any number of biomarkers from each set can be used to provide highly enriched and detailed information of mechanism, mode and subcellular sites of injury, anatomical locations of injury and status of different cell types in the nervous system (neuronal subtypes, neural stem cells, astro-glia, oligodendrocyte and microglia cell).

In a preferred embodiment at least one biomarker specific different locations such as for an anatomical region, different cell types and/or different subcellular structures of a cell are used to determine the mechanism, mode, subcellular sites of injury, anatomical locations of injury and status of different cell types in the nervous system, more preferably a panel of at least 2 biomarkers are selected from each desired location, more preferably at least 3, 4, 5, 6, 7, 8, 9, 10 up to about 100 biomarkers are selected from each location.

In a preferred embodiment, subcellular neuronal biomarkers for diagnosis and detection of brain and/or CNS injury and/or neural disorders, preferably are at least one of axonal proteins, dendritic proteins, somal proteins, neural nuclear proteins, presynaptic proteins, post-synaptic proteins.

In a preferred embodiment, axonal proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: .alpha. II spectrin (and SPDB)-1, NF-68 (NF-L)-2, Tau-3, .alpha. II, III spectrin, NF-200 (NF-H), NF-160 (NF-M), Amyloid precursor protein, .alpha. internexin, peptides, fragments or derivatives thereof.

In a preferred embodiment, dendritic proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: beta III-tubulin-1, p24 microtubule-associated protein-2, alpha-Tubulin (P02551), beta-Tubulin (P04691), MAP-2A/B-3, MAP-2C-3, Stathmin-4, Dynamin-1 (P21575), Phocein, Dynactin (Q13561), Vimentin (P31000), Dynamin, Profilin, Cofilin 1,2, peptides, fragments or derivatives thereof.

In another preferred embodiment, neural nuclear proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: NeuN-1, S/G(2) nuclear autoantigen (SG2NA), Huntingtin, peptides or fragments thereof.

In another preferred embodiment, somal proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: UCH-L1 (Q00981)-1, Glycogen phosphorylase-BB-2, PEBP (P31044), NSE (P07323), CK-BB (P07335), Thy 1.1, Prion protein, Huntingtin, 14-3-3 proteins (e.g. 14-3-3-epsolon (P42655)), SM22-.alpha., Calgranulin AB, alpha-Synuclein (P37377), beta-Synuclein (Q63754), HNP 22, peptides, fragments or derivatives thereof.

In another preferred embodiment, presynaptic proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: Synaptophysin-1, Synaptotagmin (P21707), Synaptojanin-1 (Q62910), Synaptojanin-2, Synapsin1 (Synapsin-Ia), Synapsin2 (Q63537), Synapsin3, GAP43, Bassoon(NP.sub.--003449), Piccolo (aczonin) (NP.sub.--149015), Syntaxin, CRMP1, 2, Amphiphysin-1 (NP.sub.--001626), Amphiphysin-2 (NP.sub.--647477), peptides, fragments or derivatives thereof.

In another preferred embodiment, post-synaptic proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: PSD95-1, NMDA-receptor (and all subtypes)-2, PSD93, AMPA-kainate receptor (all subtypes), mGluR (all subtypes), Calmodulin dependent protein kinase II (CAMPK)-alpha, beta, gamma, CaMPK-IV, SNAP-25, a-/b-SNAP, peptides, fragments or derivatives thereof.

In another preferred embodiment, identified biomarkers distinguish the damaged neural cell subtype such as, for example, myelin-oligodendrocytes, glial, microglial, Schwann cells, glial scar.

In a preferred embodiment, Myelin-Oligodendrocyte biomarkers are: Myelin basic protein (MBP) and fragments, Myelin proteolipid protein (PLP), Myelin Oligodendrocyte specific protein (MOSP), Myelin Oligodendrocyte glycoprotein (MOG), myelin associated protein (MAG), Oligodendrocyte NS-1 protein; Glial Protein Biomarkers: GFAP (P47819), Protein disulfide isomerase (PDI)--P04785, Neurocalcin delta, S100beta; Microglia protein Biomarkers: Iba1, OX-42, OX-8, OX-6, ED-1, PTPase (CD45), CD40, CD68, CD11b, Fractalkine (CX3CL1) and Fractalkine receptor (CX3CR1), 5-d-4 antigen; Schwann cell markers: Schwann cell myelin protein; Glia Scar: Tenascin.

In another preferred embodiment, biomarkers identifying the anatomical location of neural injury and/or neural damage, include, but not limited to: Hippocampus: Stathmin, Hippocalcin, SCG10; Cerebellum: Purkinje cell protein-2 (Pcp2), Calbindin D9K, Calbindin D28K (NP.sub.--114190), Cerebellar CaBP, spot 35; Cerebrocortex: Cortexin-1 (p60606), H-2Z1 gene product; Thalamus: CD15 (3-fucosyl-N-acetyl-lactosamine) epitope; Hypothalamus: Orexin receptors (OX-1R and OX-2R)-appetite, Orexins (hypothalamus-specific peptides); Corpus callosum: MBP, MOG, PLP, MAG; Spinal Cord: Schwann cell myelin protein; Striatum: Striatin, Rhes (Ras homolog enriched in striatum); Peripheral ganglia: Gadd45a; Peripherial nerve fiber(sensory+motor): Peripherin, Peripheral myelin protein 22 (AAH91499); PH8 (S Serotonergic Dopaminergic), PEP-19, Neurocalcin (NC), a neuron-specific EF-hand Ca.sup.2+-binding protein, Encephalopsin, Striatin, SG2NA, Zinedin, Recoverin, and Visinin.

In another preferred embodiment, biomarkers identifying damaged neural subtypes include, but not limited to: Neurotransmitter Receptors: NMDA receptor subunits (e.g. NR1A2B), Glutamate receptor subunits (AMPA, Kainate receptors (e.g. GluR1, GluR4), beta-adrenoceptor subtypes (e.g. beta(2)), Alpha-adrenoceptors subtypes (e.g. alpha(2c)), GABA receptors (e.g. GABA(B)), Metabotropic glutamate receptor (e.g. mGluR3), 5-HT serotonin receptors (e.g. 5-HT(3)), Dopamine receptors (e.g. D4), Muscarinic Ach receptors (e.g. M1), Nicotinic Acetylcholine Receptor (e.g. alpha-7); Neurotransmitter Transporters: Norepinephrine Transporter (NET), Dopamine transporter (DAT), Serotonin transporter (SERT), Vesicular transporter proteins (VMAT1 and VMAT2), GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT), Glutamate Transporter (e.g. GLT1), Vesicular acetylcholine transporter, Vesicular Glutamate Transporter 1, [VGLUT1; BNPI] and VGLUT2, Choline transporter, (e.g. CHT1); Cholinergic Biomarkers: Acetylcholine Esterase, Choline acetyltransferase [ChAT]; Dopaminergic Biomarkers: Tyrosine Hydroxylase (TH), Phospho-TH, DARPP32; Noradrenergic Biomarkers: Dopamine beta-hydroxylase (DbH); Adrenergic Biomarkers: Phenylethanolamine N-methyltransferase (PNMT); Serotonergic Biomarkers: Tryptophan Hydroxylase (TrH); Glutamatergic Biomarkers: Glutaminase, Glutamine synthetase; GABAergic Biomarkers: GABA transaminase [GABAT]), GABA-B-R2.

Demyelination proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: myelin basic protein (MBP), myelin proteolipid protein, peptides, fragments or derivatives thereof.

In another preferred embodiment, glial proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: GFAP (P47819), protein disulfide isomerase (PDI-P04785), peptides, fragments and derivatives thereof.

In another preferred embodiment, cholinergic proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: acetylcholine esterase, choline acetyltransferase, peptides, fragments or derivatives thereof.

In another preferred embodiment, dopaminergic proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: tyrosine hydroxylase (TH), phospho-TH, DARPP32, peptides, fragments or derivatives thereof.

In another preferred embodiment, noradrenergic proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: dopamine beta-hydroxylase (DbH), peptides, fragments or derivatives thereof.

In another preferred embodiment, serotonergic proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: tryptophan hydroxylase (TrH), peptides, fragments or derivatives thereof.

In another preferred embodiment, glutamatergic proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: glutaminase, glutamine synthetase, peptides, fragments or derivatives thereof.

In another preferred embodiment, GABAergic proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: GABA transaminase (4-aminobutyrate-2-ketoglutarate transaminase [GABAT]), glutamic acid decarboxylase (GAD25, 44, 65, 67), peptides, fragments and derivatives thereof.

In another preferred embodiment, neurotransmitter receptors identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: beta-adrenoreceptor subtypes, (e.g. beta (2)), alpha-adrenoreceptor subtypes, (e.g. (alpha (2c)), GABA receptors (e.g. GABA(B)), metabotropic glutamate receptor. (e.g. mGluR3), NMDA receptor subunits (e.g. NR1A2B), Glutamate receptor subunits (e.g. GluR4), 5-HT serotonin receptors (e.g. 5-HT(3)), dopamine receptors (e.g. D4), muscarinic Ach receptors (e.g. M1), nicotinic acetylcholine receptor (e.g. alpha-7), peptides, fragments or derivatives thereof.

In another preferred embodiment, neurotransmitter transporters identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, preferably are: norepinephrine transporter (NET), dopamine transporter (DAT), serotonin transporter (SERT), vesicular transporter proteins (VMAT1 and VMAT2), GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT), glutamate transporter (e.g. GLT1), vesicular acetylcholine transporter, choline transporter (e.g. CHT1), peptides, fragments, or derivatives thereof.

In another preferred embodiment, other proteins identified as biomarkers for diagnosis and detection of brain and/or CNS injury or neural disorders, include, but are not limited to vimentin (P31000), CK-BB (P07335), 14-3-3-epsilon (P42655), MMP2, MMP9, peptides, fragments or derivatives thereof.

The markers are characterized by molecular weight, enzyme digested fingerprints and by their known protein identities. The markers can be resolved from other proteins in a sample by using a variety of fractionation techniques, e.g., chromatographic separation coupled with mass spectrometry, or by traditional immunoassays. In preferred embodiments, the method of resolution involves Surface-Enhanced Laser Desorption/Ionization ("SELDI") mass spectrometry, in which the surface of the mass spectrometry probe comprises adsorbents that bind the markers.

In other preferred embodiments, a plurality of the biomarkers are detected, preferably at least two of the biomarkers are detected, more preferably at least three of the biomarkers are detected, most preferably at least four of the biomarkers are detected.

In one aspect, the amount of each biomarker is measured in the subject sample and the ratio of the amounts between the markers is determined. Preferably, the amount of each biomarker in the subject sample and the ratio of the amounts between the biomarkers and compared to normal healthy individuals. The increase in ratio of amounts of biomarkers between healthy individuals and individuals suffering from injury is indicative of the injury magnitude, disorder progression as compared to clinically relevant data.

Preferably, biomarkers that are detected at different stages of injury and clinical disease are correlated to assess anatomical injury, type of cellular injury, subcellular localization of injury. Monitoring of which biomarkers are detected at which stage, degree of injury in disease or physical injury will provide panels of biomarkers that provide specific information on mechanisms of injury, identify multiple subcellular sites of injury, identify multiple cell types involved in disease related injury and identify the anatomical location of injury.

In another aspect, preferably a single biomarker is used in combination with one or more biomarkers from normal, healthy individuals for diagnosing injury, location of injury and progression of disease and/or neural injury, more preferably a plurality of the markers are used in combination with one or more biomarkers from normal, healthy individuals for diagnosing injury, location of injury and progression of disease and/or neural injury. It is preferred that one or more protein biomarkers are used in comparing protein profiles from patients susceptible to, or suffering from disease and/or neural injury, with normal subjects.

Preferred detection methods include use of a biochip array. Biochip arrays useful in the invention include protein and nucleic acid arrays. One or more markers are immobilized on the biochip array and subjected to laser ionization to detect the molecular weight of the markers. Analysis of the markers is, for example, by molecular weight of the one or more markers against a threshold intensity that is normalized against total ion current. Preferably, logarithmic transformation is used for reducing peak intensity ranges to limit the number of markers detected.

In another preferred method, data is generated on immobilized subject samples on a biochip array, by subjecting said biochip array to laser ionization and detecting intensity of signal for mass/charge ratio; and, transforming the data into computer readable form; and executing an algorithm that classifies the data according to user input parameters, for detecting signals that represent markers present in injured and/or diseased patients and are lacking in non-injured and/or diseased subject controls.

Preferably the biochip surfaces are, for example, ionic, anionic, comprised of immobilized nickel ions. comprised of a mixture of positive and negative ions, comprises one or more antibodies, single or double stranded nucleic acids, comprises proteins, peptides or fragments thereof, amino acid probes, comprises phage display libraries.

In other preferred methods one or more of the markers are detected using laser desorption/ionization mass spectrometry, comprising, providing a probe adapted for use with a mass spectrometer comprising an adsorbent attached thereto, and; contacting the subject sample with the adsorbent, and; desorbing and ionizing the marker or markers from the probe and detecting the deionized/ionized markers with the mass spectrometer.

Preferably, the laser desorption/ionization mass spectrometry comprises, providing a substrate comprising an adsorbent attached thereto; contacting the subject sample with the adsorbent; placing the substrate on a probe adapted for use with a mass spectrometer comprising an adsorbent attached thereto; and, desorbing and ionizing the marker or markers from the probe and detecting the desorbed/ionized marker or markers with the mass spectrometer.

The adsorbent can for example be, hydrophobic, hydrophilic, ionic or metal chelate adsorbent, such as, nickel or an antibody, single- or double stranded oligonucleotide, amino acid, protein, peptide or fragments thereof.

In another embodiment, a process for purification of a biomarker, comprising fractioning a sample comprising one or more protein biomarkers by size-exclusion chromatography and collecting a fraction that includes the one or more biomarker; and/or fractionating a sample comprising the one or more biomarkers by anion exchange chromatography and collecting a fraction that includes the one or more biomarkers. Fractionation is monitored for purity on normal phase and immobilized nickel arrays. Generating data on immobilized marker fractions on an array, is accomplished by subjecting said array to laser ionization and detecting intensity of signal for mass/charge ratio; and, transforming the data into computer readable form; and executing an algorithm that classifies the data according to user input parameters, for detecting signals that represent markers present in injured and/or diseased patients and are lacking in non-injured and/or diseased subject controls. Preferably fractions are subjected to gel electrophoresis and correlated with data generated by mass spectrometry. In one aspect, gel bands representative of potential markers are excised and subjected to enzymatic treatment and are applied to biochip arrays for peptide mapping.

In another preferred embodiment, the presence of certain biomarkers is indicative of the extent of CNS and/or brain injury. For example, detection of one or more dendritic damage markers, soma injury markers, demyelination markers, axonal injury markers would be indicative of CNS injury and the presence of one or more would be indicative of the extent of nerve injury.

In another preferred embodiment, the presence of certain biomarkers is indicative of a neurological disorder. i.e. dendritic damage markers, soma injury markers, demyelination markers, axonal injury markers, synaptic terminal markers, post-synaptic markers.

Preferred methods for detection and diagnosis of CNS/PNS and/or brain injury comprise detecting at least one or more protein biomarkers in a subject sample, and; correlating the detection of one or more protein biomarkers with a diagnosis of CNS and/or brain injury, wherein the correlation takes into account the detection of one or more biomarker in each diagnosis, as compared to normal subjects, wherein the one or more protein markers are selected from: neural proteins, such as for example, Axonal Proteins: .alpha. II spectrin (and SPDB)-1, NF-68 (NF-L)-2, Tau-3, .alpha. II, III spectrin, NF-200 (NF-H), NF-160 (NF-M), Amyloid precursor protein, a internexin; Dendritic Proteins: beta 1'-tubulin-1, p24 microtubule-associated protein-2, alpha-Tubulin (P02551), beta-Tubulin (P04691), MAP-2A/B-3, MAP-2C-3, Stathmin-4, Dynamin-1 (P21575), Phocein, Dynactin (Q13561), Vimentin (P31000), Dynamin, Profilin, Cofilin 1,2; Somal Proteins: UCH-L1 (Q00981)-1, Glycogen phosphorylase-BB-2, PEBP (P31044), NSE (P07323), CK-BB (P07335), Thy 1.1, Prion protein, Huntingtin, 14-3-3 proteins (e.g. 14-3-3-epsolon (P42655)), SM22-.alpha., Calgranulin AB, alpha-Synuclein (P37377), beta-Synuclein (Q63754), HNP 22; Neural nuclear proteins: NeuN-1, S/G(2) nuclear autoantigen (SG2NA), Huntingtin; Presynaptic Proteins: Synaptophysin-1, Synaptotagmin (P21707), Synaptojanin-1 (Q62910), Synaptojanin-2, Synapsin1 (Synapsin-Ia), Synapsin2 (Q63537), Synapsin3, GAP43, Bassoon(NP.sub.--003449), Piccolo (aczonin) (NP.sub.--149015), Syntaxin, CRMP1, 2, Amphiphysin-1 (NP.sub.--001626), Amphiphysin-2 (NP.sub.--647477); Post-Synaptic Proteins: PSD95-1, NMDA-receptor (and all subtypes)-2, PSD93, AMPA-kainate receptor (all subtypes), mGluR (all subtypes), Calmodulin dependent protein kinase II (CAMPK)-alpha, beta, gamma, CaMPK-IV, SNAP-25, a-/b-SNAP; Myelin-Oligodendrocyte: Myelin basic protein (MBP) and fragments, Myelin proteolipid protein (PLP), Myelin Oligodendrocyte specific protein (MOSP), Myelin Oligodendrocyte glycoprotein (MOG), myelin associated protein (MAG), Oligodendrocyte NS-1 protein; Glial Protein Biomarkers: GFAP (P47819), Protein disulfide isomerase (PDI)--P04785, Neurocalcin delta, S100beta; Microglia protein Biomarkers: Iba1, OX-42, OX-8, OX-6, ED-1, PTPase (CD45), CD40, CD68, CD11b, Fractalkine (CX3CL1) and Fractalkine receptor (CX3CR1), 5-d-4 antigen; Schwann cell markers: Schwann cell myelin protein; Glia Scar: Tenascin; Hippocampus: Stathmin, Hippocalcin, SCG10; Cerebellum: Purkinje cell protein-2 (Pcp2), Calbindin D9K, Calbindin D28K (NP.sub.--114190), Cerebellar CaBP, spot 35; Cerebrocortex: Cortexin-1 (P60606), H-2Z1 gene product; Thalamus: CD15 (3-fucosyl-N-acetyl-lactosamine) epitope; Hypothalamus: Orexin receptors (OX-1R and OX-2R)-appetite, Orexins (hypothalamus-specific peptides); Corpus callosum: MBP, MOG, PLP, MAG; Spinal Cord: Schwann cell myelin protein; Striatum: Striatin, Rhes (Ras homolog enriched in striatum); Peripheral ganglia: Gadd45a; Peripherial nerve fiber(sensory+motor): Peripherin, Peripheral myelin protein 22 (AAH91499); Other Neuron-specific proteins: PH8 (S Serotonergic Dopaminergic, PEP-19, Neurocalcin (NC), a neuron-specific EF-hand Ca.sup.2+-binding protein, Encephalopsin, Striatin, SG2NA, Zinedin, Recoverin, Visinin; Neurotransmitter Receptors: NMDA receptor subunits (e.g. NR1A2B), Glutamate receptor subunits (AMPA, Kainate receptors (e.g. GluR1, GluR4), beta-adrenoceptor subtypes (e.g. beta(2)), Alpha-adrenoceptors subtypes (e.g. alpha(2c)), GABA receptors (e.g. GABA(B)), Metabotropic glutamate receptor (e.g. mGluR3), 5-HT serotonin receptors (e.g. 5-HT(3)), Dopamine receptors (e.g. D4), Muscarinic Ach receptors (e.g. M1), Nicotinic Acetylcholine Receptor (e.g. alpha-7); Neurotransmitter Transporters: Norepinephrine Transporter (NET), Dopamine transporter (DAT), Serotonin transporter-(SERT), Vesicular transporter proteins (VMAT1 and VMAT2), GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT), Glutamate Transporter (e.g. GLT1), Vesicular acetylcholine transporter, Vesicular Glutamate Transporter 1, [VGLUT1; BNPI] and VGLUT2, Choline transporter, (e.g. CHT1); Cholinergic Biomarkers: Acetylcholine Esterase, Choline acetyltransferase [ChAT]; Dopaminergic Biomarkers: Tyrosine Hydroxylase (TH), Phospho-TH, DARPP32; Noradrenergic Biomarkers: Dopamine beta-hydroxylase (DbH); Adrenergic Biomarkers: Phenylethanolamine N-methyltransferase (PNMT); Serotonergic Biomarkers: Tryptophan Hydroxylase (TrH); Glutamatergic Biomarkers: Glutaminase, Glutamine synthetase; GABAergic Biomarkers: GABA transaminase [GABAT]), GABA-B-R2.

In another preferred embodiment, the invention provides a kit for analyzing cell damage in a subject. The kit, preferably includes: (a) one or more biomarkers (b) a substrate for holding a biological sample isolated from a human subject suspected of having a damaged nerve cell, (c) an agent that specifically binds at least one or more of the neural proteins; and (d) printed instructions for reacting the agent with the biological sample or a portion of the biological sample to detect the presence or amount of at least one marker in the biological sample. The biomarkers include but not limited to: Axonal Proteins: .alpha. II spectrin (and SPDB)-1, NF-68 (NF-L)-2, Tau-3, .alpha. II, III spectrin, NF-200 (NF-H), NF-160 (NF-M), Amyloid precursor protein, .alpha. internexin; Dendritic Proteins: beta III-tubulin-1, p24 microtubule-associated protein-2, alpha-Tubulin (P02551), beta-Tubulin (P04691), MAP-2A/B-3, MAP-2C-3, Stathmin-4, Dynamin-1 (P21575), Phocein, Dynactin (Q13561), Vimentin (P31000), Dynamin, Profilin, Cofilin 1,2; Somal Proteins: UCH-L1 (Q00981)-1, Glycogen phosphorylase-BB-2, PEBP (P31044), NSE (P07323), CK-BB (P07335), Thy 1.1, Prion protein, Huntingtin, 14-3-3 proteins (e.g. 14-3-3-epsolon (P42655)), SM22-.alpha., Calgranulin AB, alpha-Synuclein (P37377), beta-Synuclein (Q63754), HNP 22; Neural nuclear proteins: NeuN-1, S/G(2) nuclear autoantigen (SG2NA), Huntingtin; Presynaptic Proteins: Synaptophysin-1, Synaptotagmin (P21707), Synaptojanin-1 (Q62910), Synaptojanin-2, Synapsin1 (Synapsin-Ia), Synapsin2 (Q63537), Synapsin3, GAP43, Bassoon(NP.sub.--003449), Piccolo (aczonin) (NP.sub.--149015), Syntaxin, CRMP1, 2, Amphiphysin-1 (NP.sub.--001626), Amphiphysin-2 (NP.sub.--647477); Post-Synaptic Proteins: PSD95-1, NMDA-receptor (and all subtypes)-2, PSD93, AMPA-kainate receptor (all subtypes), mGluR (all subtypes), Calmodulin dependent protein kinase II (CAMPK)-alpha, beta, gamma, CaMPK-IV, SNAP-25, a-/b-SNAP; Myelin-Oligodendrocyte: Myelin basic protein (MBP) and fragments, Myelin proteolipid protein (PLP), Myelin Oligodendrocyte specific protein (MOSP), Myelin Oligodendrocyte glycoprotein (MOG), myelin associated protein (MAG), Oligodendrocyte NS-1 protein; Glial Protein Biomarkers: GFAP (P47819), Protein disulfide isomerase (PDI)--P04785, Neurocalcin delta, S100beta; Microglia protein Biomarkers: Iba1, OX-42, OX-8, OX-6, ED-1, PTPase (CD45), CD40, CD68, CD11b, Fractalkine (CX3CL1) and Fractalkine receptor (CX3CR1), 5-d-4 antigen; Schwann cell markers: Schwann cell myelin protein; Glia Scar: Tenascin; Hippocampus: Stathmin, Hippocalcin, SCG10; Cerebellum: Purkinje cell protein-2 (Pcp2), Calbindin D9K, Calbindin D28K (NP.sub.--114190), Cerebellar CaBP, spot 35; Cerebrocortex: Cortexin-1 (P60606), H-2Z1 gene product; Thalamus: CD15 (3-fucosyl-N-acetyl-lactosamine) epitope; Hypothalamus: Orexin receptors (OX-1R and OX-2R)-appetite, Orexins (hypothalamus-specific peptides); Corpus callosum: MBP, MOG, PLP, MAG; Spinal Cord: Schwann cell myelin protein; Striatum: Striatin, Rhes (Ras homolog enriched in striatum); Peripheral ganglia: Gadd45a; Peripherial nerve fiber(sensory+motor): Peripherin, Peripheral myelin protein 22 (AAH91499); Other Neuron-specific proteins: PH8 (S Serotonergic Dopaminergic, PEP-19, Neurocalcin (NC), a neuron-specific EF-hand Ca.sup.2+-binding protein, Encephalopsin, Striatin, SG2NA, Zinedin, Recoverin, Visinin; Neurotransmitter Receptors: NMDA receptor subunits (e.g. NR1A2B), Glutamate receptor subunits (AMPA, Kainate receptors (e.g. GluR1, GluR4), beta-adrenoceptor subtypes (e.g. beta(2)), Alpha-adrenoceptors subtypes (e.g. alpha(2c)), GABA receptors (e.g. GABA(B)), Metabotropic glutamate receptor (e.g. mGluR3), 5-HT serotonin receptors (e.g. 5-HT(3)), Dopamine receptors (e.g. D4), Muscarinic Ach receptors (e.g. M1), Nicotinic Acetylcholine Receptor (e.g. alpha-7); Neurotransmitter Transporters: Norepinephrine Transporter (NET), Dopamine transporter (DAT), Serotonin transporter (SERT), Vesicular transporter proteins (VMAT1 and VMAT2), GABA transporter vesicular inhibitory amino acid transporter (VIAAT/VGAT), Glutamate Transporter (e.g. GLT1), Vesicular acetylcholine transporter, Vesicular Glutamate Transporter 1, [VGLUT1; BNPI] and VGLUT2, Choline transporter, (e.g. CHT1); Cholinergic Biomarkers: Acetylcholine Esterase, Choline acetyltransferase [ChAT]; Dopaminergic Biomarkers: Tyrosine Hydroxylase (TH), Phospho-TH, DARPP32; Noradrenergic Biomarkers: Dopamine beta-hydroxylase (DbH); Adrenergic Biomarkers: Phenylethanolamine N-methyltransferase (PNMT); Serotonergic Biomarkers: Tryptophan Hydroxylase (TrH); Glutamatergic Biomarkers: Glutaminase, Glutamine synthetase; GABAergic Biomarkers: GABA transaminase [GABAT]), GABA-B-R2.

In another preferred embodiment, the kit comprises a composition or panel of biomarkers comprises: .alpha. II spectrin, SPDB-1, NF-68, NF-L-2, Tau-3, .beta.III-tubulin-1, p24 microtubule-associated protein-2, UCH-L1 (Q00981)-1, Glycogen phosphorylase-BB-2, NeuN-1, Synaptophysin-1, synaptotagmin (P21707), Synaptojanin-1 (Q62910), Synaptojanin-2, PSD95-1, NMDA-receptor-2 and subtypes, myelin basic protein (MBP) and fragments, GFAP (P47819), Iba1, OX-42, OX-8, OX-6, ED-1, Schwann cell myelin protein, tenascin, stathmin, Purkinje cell protein-2 (Pcp2), Cortexin-1 (P60606), Orexin receptors (OX-1R, OX-2R), Striatin, Gadd45a, Peripherin, peripheral myelin protein 22 (AAH91499), and Neurocalcin (NC).

Preferably, the biological sample is a fluid in communication with the nervous system of the subject prior to being isolated from the subject; for example, CSF or blood, and the agent can be an antibody, aptamer, or other molecule that specifically binds at least one or more of the neural proteins. The kit can also include a detectable label such as one conjugated to the agent, or one conjugated to a substance that specifically binds to the agent (e.g., a secondary antibody).
 

Claim 1 of 7 Claims

1. A method of determining the presence of traumatic brain injury (TBI) in a subject, comprising: measuring the amount of ubiquitin C-terminal hydrolase L1 (UCH-L1) in a sample of cerebral spinal fluid (CSF) or blood from a subject at a time within and up to seven days after occurrence of a suspected TBI; and, comparing the amount of UCH-L1 in said sample with the amount of UCH-L1 in a respective sample from an uninjured subject wherein a higher amount of UCH-L1 in the subject sample relative to the amount in a CSF or blood sample from the uninjured subject is indicative of TBI in the subject suspected of having the TBI.

____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.

 

 

     
[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]