Internet for Pharmaceutical and Biotech Communities
| Newsletter | Advertising |
 
 
 

  

Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 
   

 

  Pharmaceutical Patents  

 

Title:  Methods for preparing low molecular weight heparin with modified heparinase III
United States Patent: 
7,390,633
Issued: 
June 24, 2008

Inventors:
 Liu; Dongfang (Yorktown Heights, NY), Pojasek; Kevin (Cambridge, MA), Shriver; Zachary (Boston, MA), Holley; Kristine (Boston, MA), El-Shabrawi; Yosuf (Graz, AT), Venkataraman; Ganesh (Bedford, MA), Sasisekharan; Ram (Bedford, MA)
Assignee:
  Massachusetts Institute of Technology (Cambridge, MA)
Appl. No.:
 11/406,214
Filed:
 April 18, 2006


 

George Washington University's Healthcare MBA


Abstract

The invention relates to heparinase III and mutants thereof. Modified forms of heparinase III having reduced enzymatic activity which are useful for a variety of purposes, including sequencing of heparin-like glycosaminoglycans (HLGAGs), removing active heparan sulfate from a solution, inhibition of angiogenesis, etc. have been discovered according to the invention. The invention in other aspects relates to methods of treating cancer and inhibiting tumor cell growth and/or metastasis using heparinase III, or products produced by enzymatic cleavage by heparinase III of HLGAGs.

Description of the Invention

The invention in some aspects relates to heparinase III, modified forms thereof and uses thereof. The invention arose from several scientific findings which expand the field of heparinase biology. In particular the invention is based in part on the discovery of new modified forms of heparinase that have varying enzymatic activity and produce differing product profiles. The invention is also based on the finding that native heparinase III, modified forms of heparinase III, and modified forms of heparinase II having heparinase III like activity are useful for the treatment and prevention of tumor cell growth and metastasis.

The present invention provides a series of new modified heparinase III molecules. In particular, based upon a detailed structural and functional characterization of heparinase III, new heparinases with altered stability, activity and specificity are provided. The modified heparinases of the invention have many in vivo, in vitro and ex vivo utilities. For instance, they have great value in generating low molecular weight HLGAGs, heparan sulfate, or heparan sulfate fragments for clinical use. Additionally they can be used to neutralize the function of heparan sulfate containing HLGAGs or they can be used to identify the sequence of HLGAGs. Other uses are described herein.

Heparinase III is unique in that it is the only member of the heparinase family that recognizes and cleaves heparan sulfate as its only substrate. Heparinase III is also unique among its heparin-degrading family members in that it contains no cysteines in its primary amino acid sequence (Su, H., Blain, F., Musil, R. A., Zimmermann, J. J., Gu, K., and Bennett, D. C. (1996) Appl. Environ. Micro. 62, 2723-34 and Godavarti, R., Davis, M., Venkataraman, G., Cooney, C. L., Langer, R., and Sasisekharan, R. (1996) Biochem. and Biophys. Res. Comm. 225, 751-58). Heparinase III, however, does contain thirteen histidines of which one or several might be involved in the activity of the enzyme. Through a combination of chemical modification, peptide mapping, and site-directed mutagenesis studies, the role of histidines in the catalytic activity of heparinase III has been identified, according to the invention.

The nucleotide and amino acid sequences of heparinase III are provided in SEQ ID NO: 1 and SEQ ID NO: 2. The sequence of heparinase III has been reported in Su, H., Blain, F., Musil, R. A., Zimmermann, J. J., Gu, K., and Bennett, D. C. (1996) Appl. Environ. Micro. 62, 2723-34. and Godavarti, R., Davis, M., Venkataraman, G., Cooney, C. L., Langer, R., and Sasisekharan, R. (1996) Biochem. and Biophys. Res. Comm. 225, 751-58, U.S. Pat. Nos. 5,919,693 and 5,681,733, and is listed in Accession number I71365. These sequences have provided the first insight into the primary structure of the native heparinase III of F. heparinum.

The present disclosure provides additional information about the secondary and tertiary structure of the heparinase III, as well as, information relating to the functional roles of the various regions of the enzyme. This information is based upon detailed biochemical mapping of the important sites within the enzyme and characterization of these sites through kinetic studies, characterization of mutants created by site-directed mutagenesis, etc. The result is a detailed picture of the primary, secondary, and tertiary structures of heparinase III and the functional roles of various regions of the enzyme as well as the functions of specific mutants thereof.

The invention is based on several scientific findings. It was discovered according to the invention that various amino acid residues within heparinase III are essential to the catalytic function of these enzymes and can be modified to alter the enzymatic activity of these compounds. It was also discovered that other amino acid residues are absolutely critical to the function of heparinase III and if they are substituted or modified the activity of these compounds is lost completely. In particular, it has been shown according to the invention through a combination of chemical modification, peptide mapping, and site-directed mutagenesis experiments that two histidines, histidine 295 and histidine 510, are critical for the enzymatic degradation of HLGAGs by heparinase III.

As shown in the Examples section, DEPC was used in the first step of the analysis of heparinase III. DEPC is extremely useful in elucidating the role of histidines in enzymatic function. Care has to be taken, though, to ensure that DEPC doesn't modify other nucleophilic amino acids such as tyrosine, lysine or cysteine (Godavarti, R., Cooney, C. L., Langer, R., and Sasisekharan, R. (1996) Biochemistry 35, 6846-52 and Shriver, Z., Hu, Y., and Sasisekharan, R. (1998) J. Biol. Chem. 273, 10160-67). In the case of heparinase III, there are no cysteine residues in the primary amino acid sequence, eliminating this amino acid as a potential confounding factor in the chemical modification studies. Also, no decrease in the absorbance at 278 nm was observed after heparinase III was incubated with DEPC, indicating that tyrosine residues were not modified. An increase in the inactivation kinetics without a change in the order of the reaction was observed from pH 6.0-7.5 upon DEPC treatment. Furthermore, the DEPC modification was 90% reversible upon incubation with 300 mM hydroxylamine. Above pH 8.0, the inactivation kinetics were no longer first order for DEPC and the modification could not be reversed by hydroxylamine, indicating that residues other than histidines (i.e. lysines) were being modified at those pHs. However, at neutral pH, the data indicates that DEPC specifically modifies the histidine residues of heparinase III.

Consistent with the observation that DEPC is modifying a histidine residue, there was an increase in the absorbance at 240 nm as a function of time. This is indicative of formation of an N-carbethoxyhistidyl derivative, the product of a reaction between DEPC and a histidine residue. Over the course of ten minutes, 1.8 histidine residues were modified and the enzymatic activity was decreased by 90%. Also, pre-incubation with heparan sulfate resulted in lower inactivation kinetics of heparinase III by DEPC. These data indicated that DEPC specifically modified a critical histidine residue proximate to the substrate binding/active site of heparinase III, inactivating the enzyme.

An apparent discrepancy arose from these results in that the reaction of DEPC with heparinase III follows pseudo-first order kinetics, yet two histidines appeared to be independently modified, suggesting that two surface accessible histidines react with DEPC at identical rates. It could be the case that either one or both of the modified residues is responsible for inactivating the enzyme. Site-directed mutagenesis experiments were performed to determine if two histidines were essential for heparinase III's catalytic activity. The results from the site-directed mutagenesis experiments confirmed and expanded upon the chemical modification data in that surface accessible histidines are critical for heparinase III activity. These results identify histidine 295 and histidine 510 as the primary histidines involved in the degradation of HLGAGs by heparinase III. When these residues are replaced with alanines, the enzyme loses all activity towards its substrate. None of the other histidine residues when mutated to alanine show a complete loss of activity. The results from the peptide mapping studies confirm the importance of the surface accessibility of histidine 295.

The loss of activity with the H295A and H510A enzymes can be explained in several ways. It may be that these histidines are necessary for proper folding of heparinase III. However, the CD spectrum of H295A, H510A, and recombinant heparinase III were nearly identical, strongly indicating that this is not the case. It is more likely that histidine 295 and histidine 510 play a direct role in the binding of HLGAGs to the enzyme or that histidine 295 and histidine 510 are critical active site residues directly involved in the catalytic degradation of HLGAGs. Modified heparinase III molecules having a change in amino acid at His 295 or 510 can be useful for a variety of purposes, e.g., as a competitive inhibitor to functional heparinase III.

The studies described in the Examples section also identified several heparinase III mutants which had altered levels of activity but which were still active. These mutants include heparinase III molecules having the following residues mutated or substituted: His36, His105, His110, His139, His152, His225, His234, His241, His424, His469, and His539. Thus, the present invention provides for novel modified heparinases rationally designed on the basis of the sequence of the heparinase III of F. heparinum and the structural and functional characterizations disclosed herein.

In the description herein, reference is made to the amino acid residues and residue positions of native heparinase III disclosed in SEQ ID NO 2. In particular, residues and residue positions are referred to as "corresponding to" a particular residue or residue position of heparinase III. As will be obvious to one of ordinary skill in the art, these positions are relative and, therefore, insertions or deletions of one or more residues would have the effect of altering the numbering of downstream residues. In particular, N-terminal insertions or deletions would alter the numbering of all subsequent residues. Therefore, as used herein, a residue in a recombinant modified heparinase will be referred to as "corresponding to" a residue of the full heparinase III if, using standard sequence comparison programs, they would be aligned. Many such sequence alignment programs are now available to one of ordinary skill in the art and their use in sequence comparisons has become standard. As used herein, this convention of referring to the positions of residues of the recombinant modified heparinases by their corresponding heparinase III residues shall extend not only to embodiments including N-terminal insertions or deletions but also to internal insertions or deletions (e.g., insertions or deletions in "loop" regions).

In addition, in the description herein, certain substitutions of one amino acid residue for another in a recombinant modified heparinase are referred to as "conservative substitutions." As used herein, a "conservative amino acid substitution" or "conservative substitution" refers to an amino acid substitution in which the substituted amino acid residue is of similar charge as the replaced residue and is of similar or smaller size than the replaced residue. Conservative substitutions of amino acids include substitutions made amongst amino acids within the following groups: (a) the small non-polar amino acids, A, M, I, L, and V; (b) the small polar amino acids, G, S, T and C; (c) the amido amino acids, Q and N; (d) the aromatic amino acids, F, Y and W; (e) the basic amino acids, K, R and H; and (f) the acidic amino acids, E and D. Substitutions which are charge neutral and which replace a residue with a smaller residue may also be considered "conservative substitutions" even if the residues are in different groups (e.g., replacement of phenylalanine with the smaller isoleucine). The term "conservative amino acid substitution" also refers to the use of amino acid analogs or variants.

Methods for making amino acid substitutions, additions or deletions are well known in the art and are described in detail in the Examples below. The terms "conservative substitution", "non-conservative substitutions", "non-polar amino acids", "polar amino acids", and "acidic amino acids" are all used consistently with the prior art terminology. Each of these terms is well-known in the art and has been extensively described in numerous publications, including standard biochemistry text books, such as "Biochemistry" by Geoffrey Zubay, Addison-Wesley Publishing Co., 1986 edition, which describes conservative and non-conservative substitutions, and properties of amino acids which lead to their definition as polar, non-polar or acidic.

Even when it is difficult to predict the exact effect of a substitution in advance of doing so, one skilled in the art will appreciate that the effect can be evaluated by routine screening assays, preferably the biological assays described herein. Modifications of peptide properties including thermal stability, hydrophobicity, susceptibility to proteolytic degradation or the tendency-to aggregate with carriers or into multimers are assayed by methods well known to the ordinarily skilled artisan. For additional detailed description of protein chemistry and structure, see Schulz, G. E. et al., Principles of Protein Structure, Springer-Verlag, New York, 1979, and Creighton, T. E., Proteins: Structure and Molecular Principles, W. H. Freeman & Co., San Francisco, 1984.

Additionally, some of the amino acid substitutions are non-conservative substitutions. In certain embodiments where the substitution is remote from the active or binding sites, the non-conservative substitutions are easily tolerated provided that they preserve the tertiary structure characteristic of native heparinase, thereby preserving the active and binding sites. Non-conservative substitutions, such as between, rather than within, the above groups (or two other amino acid groups not shown above), which will differ more significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.

In one aspect, the invention is a substantially pure heparinase which is a modified heparinase III having a modified heparinase III k.sub.cat value, wherein the modified heparinase III k.sub.cat value is at least 10% different than a native heparinase III k.sub.cat value. In a preferred embodiment, the modified heparinase III k.sub.cat value is at least 20% different than a native heparinase III k.sub.cat value. In another preferred embodiment the modified heparinase III k.sub.cat value is at least 50% different than a native heparinase III k.sub.cat value. A "modified heparinase III k.sub.cat value" as used herein is a measurement of the catalytic activity of the modified heparinase III enzyme with respect to a heparan sulfate-like glycosaminoglycan substrate.

The k.sub.cat value may be determined using any enzymatic activity assay which is useful for assessing the activity of a heparinase enzyme, such as the assays set forth in the Examples below. Several such assays are well-known in the art. For instance, an assay for measuring k.sub.cat is described in (Ernst, S. E., Venkataraman, G., Winkler, S., Godavarti, R., Langer, R., Cooney, C. and Sasisekharan. R. (1996) Biochem. J. 315, 589-597. The "native heparinase III k.sub.cat value" is the measure of enzymatic activity of the native heparinase III.

The modified heparinase may have a reduced enzymatic activity with respect to HLGAGs. A "reduced enzymatic activity" is assessed by comparing the k.sub.cat value of the modified heparinase with that of native heparinase. Preferably the k.sub.cat value of the modified heparinase III will be less than or equal to 75% of the native heparinase III k.sub.cat value. A modified heparinase having reduced enzymatic activity with respect to HLGAGs is one which has modifications in the residues essential for catalytic activity. For instance, mutation of His.sup.110 or His.sup.241 causes the heparinase III to have a reduced enzymatic activity. A modified heparinase III which has a increased enzymatic activity is one which has altered residues which produce an enzyme with greater enzymatic activity. For instance, mutation of His.sup.139 produces modified heparinase III molecules having increased enzymatic activity. Additionally, when His.sup.225 is mutated in heparinase III, a modified heparinase III is produced which displays nearly the same enzymatic activity as native heparinase III. These enzymes are also useful.

As used herein, with respect to heparinases, the term "substantially pure" means that the heparinases are essentially free of other substances with which they may be found in nature or in vivo systems to an extent practical and appropriate for their intended use. In particular, the heparinases are sufficiently free from other biological constituents of their hosts cells so as to be useful in, for example, producing pharmaceutical preparations or sequencing. Because the heparinases of the invention may be admixed with a pharmaceutically acceptable carrier in a pharmaceutical preparation, the heparinase may comprise only a small percentage by weight of the preparation. The heparinase is nonetheless substantially pure in that it has been substantially separated from the substances with which it may be associated in living systems.

Based on the disclosure provided herein, those of ordinary skill in the art will be able to identify other modified heparinase III molecules having altered enzymatic activity with respect to the native heparinase III molecule.

In another aspect, the invention is a substantially pure heparinase which is a modified heparinase III having a modified product profile, wherein the modified product profile of the modified heparinase III is at least 10% different than a native product profile of a native heparinase III. Preferably it is at least 20% or even at least 50%. A "modified product profile" as used herein is a set of degradation products produced by a modified heparinase which differ from the degradation products which are produced by a native heparinase under identical enzymatic conditions. The difference in the product profile may be due to the presence of different enzymatic products or simply in the number of enzymatic products formed by the modified heparinase compared to the native heparinase, or a combination of the two. For instance, the formation of different enzymatic products by a modified heparinase as opposed to the native heparinase, would constitute a modified product profile. Additionally, the production of the same types of enzymatic products but in a lesser or greater amount by the modified heparinase as opposed to the native heparinase, would also constitute a modified product profile.

The product profile produced by a modified heparinase or a native heparinase may be determined by any method known in the art for examining the type or quantity of degradation product produced by heparinase. One preferred method for determining the type and quantity of product is described in Rhomberg, A. J. et al., PNAS, v. 95, p. 4176-4181 (April 1998), which is hereby incorporated in its entirety by reference. The method disclosed in the Rhomberg reference utilizes a combination of mass spectrometry and capillary electrophoretic techniques to identify the enzymatic products produced by heparinase. The Rhomberg study utilizes heparinase to degrade HLGAGs to produce HLGAG oligosaccharides. MALDI (Matrix-Assisted Laser Desorption Ionization) mass spectrometry can be used for the identification and semiquantitative measurement of substrates, enzymes, and end products in the enzymatic reaction. The capillary electrophoresis technique separates the products to resolve even small differences amongst the products and is applied in combination with mass spectrometry to quantitate the products produced. Capillary electrophoresis may even resolve the difference between a disaccharide and its semicarbazone derivative. Detailed methods for sequencing polysaccharides and other polymers are disclosed in co-pending U.S. patent applications Ser. Nos. 09/557,997 and 09/558,137, both filed on Apr. 24, 2000 and having common inventorship. The entire contents of both applications are hereby incorporated by reference.

Briefly, the method is performed by enzymatic digestion, followed by mass spectrometry and capillary electrophoresis. The enzymatic assays can be performed in a variety of manners, as long as the assays are performed identically on the modified heparinase and the native heparinase, so that the results may be compared. In the example described in the Rhomberg reference, enzymatic reactions are performed by adding 1 mL of enzyme solution to 5 mL of substrate solution. The digestion is then carried out at room temperature (22.degree. C.), and the reaction is stopped at various time points by removing 0.5 mL of the reaction mixture and adding it to 4.5 mL of a MALDI matrix solution, such as caffeic acid (approximately 12 mg/mL) and 70% acetonitrile/water. The reaction mixture is then subjected to MALDI mass spectrometry. The MALDI surface is prepared by the method of Xiang and Beavis (Xiang and Beavis (1994) Rapid. Commun. Mass. Spectrom. 8, 199-204). A two-fold lower access of basic peptide (Arg/Gly).sub.15 is premixed with matrix before being added to the oligosaccharide solution. A 1 mL aliquot of sample/matrix mixture containing 1-3 picomoles of oligosaccharide is deposited on the surface. After crystallization occurs (typically within 60 seconds), excess liquid is rinsed off with water. MALDI mass spectrometry spectra is then acquired in the linear mode by using a PerSeptive Biosystems (Framingham, Mass.) Voyager Elite reflectron time-of-flight instrument fitted with a 337 nanometer nitrogen laser. Delayed extraction is used to increase resolution (22 kV, grid at 93%, guidewire at 0.15%, pulse delay 150 ns, low mass gate at 1,000, 128 shots averaged). Mass spectra are calibrated externally by using the signals for proteinated (Arg/Gly).sub.15 and its complex with the oligosaccharide.

Capillary electrophoresis is then performed on a Hewlett-Packard.sup.3D CE unit by using uncoated fused silica capillaries (internal diameter 75 micrometers, outer diameter 363 micrometers, 1.sub.det 72.1 cm, and 1.sub.tot 85 cm). Analytes are monitored by using UV detection at 230 nm and an extended light path cell (Hewlett-Packard). The electrolyte is a solution of 10 mL dextran sulfate and 50 millimolar Tris/phosphoric acid (pH2.5). Dextran sulfate is used to suppress nonspecific interactions of the heparin oligosaccharides with a silica wall. Separations are carried out at 30 kV with the anode at the detector side (reversed polarity). A mixture of a 1/5-naphtalenedisulfonic acid and 2-naphtalenesulfonic acid (10 micromolar each) is used as an internal standard.

Other methods for assessing the product profile may also be utilized. For instance, other methods include methods which rely on parameters such as viscosity (Jandik, K. A., Gu, K. and Linhardt, R. J., (1994), Glycobiology, 4:284-296) or total UV absorbance (Ernst, S. et al., (1996), Biochem. J., 315:589-597) or mass spectrometry or capillary electrophoresis alone.

The modified heparinases of the invention may be used for any of the same purposes as native heparinase III. For instance, the modified heparinase III molecules can be used to specifically cleave a HLGAG by contacting the HLGAG substrate with one of the modified heparinases of the invention. The invention is useful in a variety of in vitro, in vivo and ex vivo methods in which it is useful to cleave HLGAGs.

The modified heparinase III may be used, for instance, in a method for inhibiting angiogenesis. In this method an effective amount for inhibiting angiogenesis of the heparinase III is administered to a subject in need of treatment thereof. Angiogenesis as used herein is the inappropriate formation of new blood vessels. "Angiogenesis" often occurs in tumors when endothelial cells secrete a group of growth factors that are mitogenic for endothelium causing the elongation and proliferation of endothelial cells which results in a generation of new blood vessels. Several of the angiogenic mitogens are heparin or heparan sulfate binding peptides which are related to endothelial cell growth factors.

The modified heparinases are also useful for treating or preventing cancer cell growth or metastasis. This aspect of the invention is discussed in more detail below, with respect to both native and modified heparinase III.

The modified heparinases are also useful for inhibiting neovascularization associated with disease such as eye disease. Neovascularization, or angiogenesis, is the growth and development of new arteries. It is critical to the normal development of the vascular system, including injury-repair. There are, however, conditions characterized by abnormal neovascularization, including diabetic retinopathy, neovascular glaucoma, rheumatoid arthritis, and certain cancers. For example, diabetic retinopathy is a leading cause of blindness. There are two types of diabetic retinopathy, simple and proliferative. Proliferative retinopathy is characterized by neovascularization and scarring. About one-half of those patients with proliferative retinopathy progress to blindness within about five years.

Another example of abnormal neovascularization is that associated with solid tumors. It is now established that unrestricted growth of tumors is dependant upon angiogenesis, and that induction of angiogenesis by liberation of angiogenic factors can be an important step in carcinogenesis. For example, basic fibroblast growth factor (bFGF) is liberated by several cancer cells and plays a crucial role in cancer angiogenesis. As used herein, an angiogenic condition means a disease or undesirable medical condition having a pathology including neovascularization. Such diseases or conditions include diabetic retinopathy, neovascular glaucoma and rheumatoid arthritis (non-cancer angiogenic conditions). Cancer angiogenic conditions are solid tumors and cancers or tumors otherwise associated with neovascularization such as hemangioendotheliomas, hemangiomas and Kaposi's sarcoma.

Proliferation of endothelial and vascular smooth muscle cells is the main feature of neovascularization. Thus the modified heparinase III of the invention is useful for preventing proliferation and, therefore, inhibiting or arresting altogether the progression of the angiogenic condition which depends in whole or in part upon such neovascularization.

Neovascularization and angiogenesis are also important in a number of other pathological processes, including arthritis, psoriasis, diabetic retinopathy, chronic inflammation, scleroderma, hemangioma, retrolental fibroplasia and abnormal capillary proliferation in hemophiliac joints, prolonged menstruation and bleeding, and other disorders of the female reproductive system (J. Folkman, Nature Medicine, Vol 1, p. 27-31, (1995); J. W. Miller, et al., J. Pathol., Vol. 145, pp. 574-584 (1994); A. P. Adamid, et al., Amer. J. Ophthal., Vol. 118, pp. 445-450 (1994); K. Takahashi, at al., J. Clin. Invest., Vol. 93, pp. 2357-2364 (1994); D. J. Peacock, et al., J. Exp. Med., Vol. 175, pp. 1135-1138 (1992); B. J. Nickoloff, et al., Amer. J. Pathol., Vol. 44, pp. 820-828 (1994); J. Folkman, Steroid Hormones and Uterine Bleeding, N. J. Alexander and C. d'Arcangues, Eds., American Association for the Advancement of Science Press, Washington, D.C., U.S.A., pp. 144-158 (1992)). Thus, in another embodiment, the modified heparinase is administered to treat diseases such as psoriasis. Psoriasis is a common dermatological disease caused by chronic inflammation.

The H295A and H510A modified heparinases are also useful according to the invention as inhibitors of heparinase III activity. These modified heparinases have a minimum one base pair modification from native heparinase but have no enzymatic activity. Thus, modified heparinases having a H295A or H510A modification can be used as competitive inhibitors of native or functional modified forms of heparinase III. These compounds are useful any time it is desirable to block heparinase III activity, e.g., when cell proliferation and migration is desirable or to block the activity of heparinase III in a solution.

The modified heparinases of the invention are also useful as tools for sequencing HLGAGs. Detailed methods for sequencing polysaccharides and other polymers are disclosed in co-pending U.S. patent applications Ser. Nos. 09/557,997 and 09/558,137, both filed on Apr. 24, 2000 and having common inventorship. These methods utilize tools such as heparinases in the sequencing process. The modified heparinase III of the invention is useful as such a tool.

The modified heparinases of the invention may also be used to remove active HLGAGs from a HLGAG containing fluid. A HLGAG containing fluid is contacted with the modified heparinase III of the invention to degrade the HLGAG. The method is particularly useful for the ex vivo removal of HLGAGs from blood. In one embodiment of the invention the modified heparinase is immobilized on a solid support as is conventional in the art. The solid support containing the immobilized modified heparinase may be used in extracorporeal medical devices (e.g. hemodialyzer, pump-oxygenator) for systemic heparinization to prevent the blood in the device from clotting. The support membrane containing immobilized heparinase III is positioned at the end of the device to neutralize the HLGAG before the blood is returned to the body.

In another aspect, the invention is an immobilized substantially pure heparinase of the invention. The heparinase may be immobilized to any type of support but if the support is to be used in vivo or ex vivo it is desired that the support is sterile and biocompatible. A biocompatible support is one which would not cause an immune or other type of damaging reaction when used in a subject. The heparinase may be immobilized by any method known in the art. Many methods are known for immobilizing proteins to supports.

The heparinase III is, in some embodiments, immobilized on a solid support. A "solid support" as used herein refers to any solid material to which a protein can be immobilized. Solid supports, for example, include but are not limited to membranes, e.g., natural and modified celluloses such as nitrocellulose or nylon, Sepharose, Agarose, glass, polystyrene, polypropylene, polyethylene, dextran, amylases, polyacrylamides, polyvinylidene difluoride, other agaroses, and magnetite, including magnetic beads. The carrier can be totally insoluble or partially soluble and may have any possible structural configuration. Thus, the support may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube or microplate well, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, bottom surface of a microplate well, etc.

The modified heparinase III molecules are also useful for generating LMWHs which have many therapeutic utilities. The modified heparinase III molecules and LMWH can be used for the treatment of any type of condition in which LMWH therapy has been identified as a useful therapy, e.g., preventing coagulation, preventing psoriasis.

Thus, the modified heparinase molecules are useful for treating or preventing disorders associated with coagulation. A "disease associated with coagulation" as used herein refers to a condition characterized by local inflammation resulting from an interruption in the blood supply to a tissue due to a blockage of the blood vessel responsible for supplying blood to the tissue such as is seen for myocardial or cerebral infarction. A cerebral ischemic attack or cerebral ischemia is a form of ischemic condition in which the blood supply to the brain is blocked. This interruption in the blood supply to the brain may result from a variety of causes, including an intrinsic blockage or occlusion of the blood vessel itself, a remotely originated source of occlusion, decreased perfusion pressure or increased blood viscosity resulting in inadequate cerebral blood flow, or a ruptured blood vessel in the subarachnoid space or intracerebral tissue.

The methods of the invention are useful also for treating cerebral ischemia. Cerebral ischemia may result in either transient or permanent deficits and the seriousness of the neurological damage in a patient who has experienced cerebral ischemia depends on the intensity and duration of the ischemic event. A transient ischemic attack is one in which the blood flow to the brain is interrupted only briefly and causes temporary neurological deficits, which often are clear in less than 24 hours. Symptoms of TIA include numbness or weakness of face or limbs, loss of the ability to speak clearly and/or to understand the speech of others, a loss of vision or dimness of vision, and a feeling of dizziness. Permanent cerebral ischemic attacks, also called stroke, are caused by a longer interruption in blood flow to the brain resulting from either a thromboembolism. A stroke causes a loss of neurons typically resulting in a neurologic deficit that may improve but that does not entirely resolve. Thromboembolic stroke is due to the occlusion of an extracranial or intracranial blood vessel by a thrombus or embolus. Because it is often difficult to discern whether a stroke is caused by a thrombosis or an embolism, the term "thromboembolism" is used to cover strokes caused by either of these mechanisms.

The methods of the invention in some embodiments are directed to the treatment of acute thromboembolic stroke using modified heparinase III or the LMWHs generated therewith. An acute stroke is a medical syndrome involving neurological injury resulting from an ischemic event, which is an interruption in the blood supply to the brain.

An effective amount of a modified heparinase III or the LMWHs generated therewith alone or in combination with another therapeutic for the treatment of stroke is that amount sufficient to reduce in vivo brain injury resulting from the stroke. A reduction of brain injury is any prevention of injury to the brain which otherwise would have occurred in a subject experiencing a thromboembolic stroke absent the treatment of the invention. Several physiological parameters may be used to assess reduction of brain injury, including smaller infarct size, improved regional cerebral blood flow, and decreased intracranial pressure, for example, as compared to pretreatment patient parameters, untreated stroke patients or stroke patients treated with thrombolytic agents alone.

The modified heparinase III or the LMWHs generated therewith may be used alone or in combination with a therapeutic agent for treating a disease associated with coagulation. Examples of therapeutics useful in the treatment of diseases associated with coagulation include anticoagulation agents, antiplatelet agents, and thrombolytic agents.

Anticoagulation agents prevent the coagulation of blood components and thus prevent clot formation. Anticoagulants include, but are not limited to, heparin, warfarin, coumadin, dicumarol, phenprocoumon, acenocoumarol, ethyl biscoumacetate, and indandione derivatives.

Antiplatelet agents inhibit platelet aggregation and are often used to prevent thromboembolic stroke in patients who have experienced a transient ischemic attack or stroke. Antiplatelet agents include, but are not limited to, aspirin, thienopyridine derivatives such as ticlopodine and clopidogrel, dipyridamole and sulfinpyrazone, as well as RGD mimetics and also antithrombin agents such as, but not limited to, hirudin.

Thrombolytic agents lyse clots which cause the thromboembolic stroke. Thrombolytic agents have been used in the treatment of acute venous thromboembolism and pulmonary emboli and are well known in the art (e.g. see Hennekens et al, J Am Coll Cardiol; v. 25 (7 supp), p. 18S-22S (1995); Holmes, et al, J Am Coll Cardiol; v.25 (7 suppl), p. 10S-17S(1995)). Thrombolytic agents include, but are not limited to, plasminogen, a.sub.2-antiplasmin, streptokinase, antistreplase, tissue plasminogen activator (tPA), and urokinase. "tPA" as used herein includes native tPA and recombinant tPA, as well as modified forms of tPA that retain the enzymatic or fibrinolytic activities of native tPA. The enzymatic activity of tPA can be measured by assessing the ability of the molecule to convert plasminogen to plasmin. The fibrinolytic activity of tPA may be determined by any in vitro clot lysis activity known in the art, such as the purified clot lysis assay described by Carlson, et. al., Anal. Biochem. 168, 428-435 (1988) and its modified form described by Bennett, W. F. Et al., 1991, Supra, the entire contents of which are hereby incorporated by reference.

The invention also relates to the discovery that heparinase III, modified forms thereof, modified forms of heparinase II and degradation products of heparinases (HLGAG fragments) actually are useful for treating and preventing cancer cell proliferation and metastasis. Thus, according to another aspect of the invention, there is provided methods for treating subjects having or at risk of having cancer.

Heparinases degrade HLGAGs, which are linear polysaccharides characterized by a disaccharide-repeat unit of a uronic acid [.alpha.-L-iduronic acid (I) or .beta.-D-glucuronic acid (G)] linked 1,4 to .alpha.-D-hexosamine (H). HLGAGs are the most acidic, heterogeneous and information dense biopolymer found in nature due to the highly variable chemical modification of the disaccharide repeat unit--primarily in the form of sulfation at the N--, 3O and 6O positions of H, and the 2O of the uronic acids. Critically, HLGAGs (along with collagen) are key components of the cell surface-extracellular matrix (ECM) interface. While collagen-like proteins provide the necessary extracellular scaffold for cells to attach and form tissues, the complex polysaccharides fill the space created by the scaffold and act as a molecular sponge by specifically binding and regulating the biological activities of numerous signaling molecules like growth factors, cytokines etc. It has recently been recognized that cells synthesize distinct HLGAG sequences and decorate themselves with these sequences, using the extraordinary information content present in the sequences to bind specifically to many signaling molecules and thereby regulate various biological processes.

Tumor metastasis involves the spread of tumor cells primarily via the vasculature following the disassembly of tumor cell-ECM interactions through the degradation of the ECM, and tumor cell extravasation through the capillary bed. Recent evidence has suggested that collagen (and related proteins), enzymes (collagenases and others) that degrade the proteinaceous component of the ECM may play roles in the regulation of tumor angiogenesis or tumor cell invasion of the ECM. However, the chemical heterogeneity of complex polysaccharides and lack of effective tools, has seriously limited investigations into the roles of HLGAGs in tumor growth and metastasis. Interestingly, however, in parallel with collagen and the proteases, it has been hypothesized that HLGAG degrading enzymes (heparinases) assist in the breakdown of ECM to promote tumor growth, angiogenesis and metastasis. Other evidence such as the recent cloning of tumor heparinase genes has led to the paradigm that, the expression of HLGAG degrading enzymes represents a `switch` from a primary tumor to a metastatic disease state.

In surprising contrast to the findings of the prior art, it has now been discovered according to the invention that not only is the prior art incorrect in stating that HLGAG degrading enzymes may contribute to tumor growth and metastasis, but in fact that certain HLGAG degrading enzymes and HLGAG fragments (including LMWH compositions generated by heparinase III), actually, are very effective in inhibiting cancer cell growth and metastasis. In particular, it has been discovered that heparinases having similar functional activity to native heparinase III prevent in vivo tumor growth and metastasis. It has also been discovered that the enzymatic products of heparinase III (HLGAG fragments and LMWH) are useful for preventing tumor growth and metastasis.

The Examples section provides in vitro and in vivo data demonstrating the effectiveness of the heparinases in preventing tumor growth and metastasis. Using two different animal models of cancer, B16BL6 and LLC, strikingly similar data was obtained, indicating an important role for HLGAGs in tumor growth and metastasis. The data also demonstrated the differential effects of heparinases I and III, and the HLGAG fragments generated by these heparinases on physiological processes. Heparinase I was unable to prevent cancer cell proliferation or metastasis, indicating that the effects are specific to heparinase III and functional variants thereof. These results are consistent with the unique specificities of heparinases, and hence the distinct oligosaccharide products they generate. Additionally, the data demonstrated that HLGAG fragments for one cell type were able to influence effects on another cell type, strongly indicating the involvement of specific sequences of HLGAG in modulating effects on tumor growth and metastasis.

Thus, the invention includes methods for treating or preventing tumor formation and/or metastasis by administering to a subject a heparinase III molecule (native or modified) and/or therapeutic HLGAG fragments (including LMWH).

The heparinases useful in this aspect of the invention include native heparinase III, modified heparinase III and modified heparinases having the functional activity of heparinase III. "Native heparinase III" as used herein refers to the naturally occurring heparinase III molecule in an isolated form. The sequence of the naturally occurring molecule from F. heparinum is provided as SEQ ID NO.: 1 (nucleic acid sequence) and 2 (amino acid sequence), and has been extensively described in art including in issued patents. An isolated molecule is a molecule that is substantially pure and is free of other substances with which it is ordinarily found in nature or in vivo systems to an extent practical and appropriate for its intended use. In particular, the molecular species are sufficiently pure and are sufficiently free from other biological constituents of host cells so as to be useful in, for example, producing pharmaceutical preparations or sequencing if the molecular species is a nucleic acid, peptide, or polysaccharide. Because an isolated molecular species of the invention may be admixed with a pharmaceutically-acceptable carrier in a pharmaceutical preparation, the molecular species may comprise only a small percentage by weight of the preparation. The molecular species is nonetheless substantially pure in that it has been substantially separated from the substances with which it may be associated in living systems.

A "modified heparinase III" as used herein is any heparinase III molecule which has at least one mutation, deletion or substitution, compared to native heparinase III but which retains the ability to enzymatically cleave heparan sulfate. These include the particular modified heparinases described herein as well as any other modified heparinase having the appropriate function. These can be identified by those of ordinary skill in the art using the methods described above or in the examples section. For instance, the modified heparinase III may have a simple conservative substitution within a region of the molecule which is not critical for enzymatic activity or folding and thus which has no effect on the ability of the heparinase to cleave the substrate. Additionally, substitutions such as the histidine substitutions described herein which influence the enzymatic activity or product profile of the heparinase but which still retain some enzymatic activity are also useful for this aspect of the invention because they are still able to cleave heparan sulfate. The two histidine mutations (His 295 and His 510) which lost all activity, however, are not useful in this aspect of the invention. (These two mutants have other utilities, such as competitive inhibitors.)

The term "modified heparinases having functional activity of heparinase III" as used herein refers to heparinases other than heparinase III which have been modified such that they are enzymatically active towards heparan sulfate but only have minimal or no activity towards heparin. For instance, mutation of Cys.sup.348 of heparinase II, a residue which is involved in heparin binding, causes the heparinase II to have a reduced enzymatic activity with respect to heparin. This modification produces a modified heparinase II which becomes exclusively a heparan sulfate degrading enzyme. Additionally, when histidine 440 is mutated in heparinase III, a modified heparinase III is produced which has reduced enzymatic activity with respect to heparin but which displays nearly the same enzymatic activity as native heparinase III when heparan sulfate is used as the substrate. Mutation of histidines 451, 238, and 579 of heparinase II produces modified heparinase II molecules having reduced enzymatic activity with respect to heparan sulfate. Thus modified heparinase II molecules in which the Cys.sup.348 or His.sup.440 is mutated are "modified heparinases having functional activity of heparinase III" according to the invention, whereas heparinases in which histidines 451, 238, or 579 have been mutated are not within this class of molecules.

The invention also contemplates the use of therapeutic HLGAGs for the treatment and prevention of tumor cell proliferation and metastasis. A therapeutic HLGAG fragment as used herein refers to a molecule or molecules which are pieces or fragments of an HLGAG that have been identified through the use of the native heparinase III, modified heparinase III and modified heparinases having the functional activity of heparinase III described above. HLGAG fragments also include low molecular weight heparins (LMWHs). The compositional analysis of some therapeutic HLGAGs is described below in the Examples section.

The invention also encompasses screening assays for identifying therapeutic HLGAG fragments for the treatment of a tumor and for preventing metastasis. The assays are accomplished by treating a tumor or isolated tumor cells with heparinase III, native or modified and isolating the resultant HLGAG fragments. Surprisingly, these HLGAG fragments have therapeutic activity in the prevention of tumor cell proliferation and metastasis. As described in more detail in the Examples section, these HLGAG fragments are useful as therapeutic agents for the treatment of the tumor cells from which they were generated as well as other tumors. Thus the invention encompasses individualized therapies, in which a tumor or portion of a tumor is isolated from a subject and used to prepare the therapeutic HLGAG fragments. These therapeutic fragments can be re-administered to the subject to protect the subject from further tumor cell proliferation or metastasis or from the initiation of metastasis if the tumor is not yet metastatic. Alternatively the fragments can be used in a different subject having the same type or tumor or a different type of tumor.

The term "therapeutic HLGAG fragment" as used herein refers to an HLGAG which has therapeutic activity in that it prevents the proliferation and/or metastasis of a tumor cell. Such compounds can be generated using heparinase III to produce therapeutic fragments or they can be synthesized de novo. Putative HLGAG fragments can be tested for therapeutic activity using any of the assays described herein or known in the art. Thus the therapeutic HLGAG fragment may be a synthetic HLGAG fragment generated based on the sequence of the HLGAG fragment identified when the tumor is contacted with heparinase III, or having minor variations which do not interfere with the activity of the compound. Alternatively the therapeutic HLGAG fragment may be an isolated HLGAG fragment produced when the tumor is contacted with heparinase III.

The invention is useful for treating and/or preventing tumor cell proliferation or metastasis in a subject. The terms "prevent" and "preventing" as used herein refer to inhibiting completely or partially the proliferation or metastasis of a cancer or tumor cell, as well as inhibiting any increase in the proliferation or metastasis of a cancer or tumor cell.

A "subject having a cancer" is a subject that has detectable cancerous cells. The cancer may be a malignant or non-malignant cancer. Cancers or tumors include but are not limited to biliary tract cancer; brain cancer; breast cancer; cervical cancer; choriocarcinoma; colon cancer; endometrial cancer; esophageal cancer; gastric cancer; intraepithelial neoplasms; lymphomas; liver cancer; lung cancer (e.g. small cell and non-small cell); melanoma; neuroblastomas; oral cancer; ovarian cancer; pancreas cancer; prostate cancer; rectal cancer; sarcomas; skin cancer; testicular cancer; thyroid cancer; and renal cancer, as well as other carcinomas and sarcomas.

A "subject at risk of having a cancer" as used herein is a subject who has a high probability of developing cancer. These subjects include, for instance, subjects having a genetic abnormality, the presence of which has been demonstrated to have a correlative relation to a higher likelihood of developing a cancer and subjects exposed to cancer causing agents such as tobacco, asbestos, or other chemical toxins, or a subject who has previously been treated for cancer and is in apparent remission. When a subject at risk of developing a cancer is treated with a heparinase III the subject may be able to kill the cancer cells as they develop.

Effective amounts of the native heparinase III, modified heparinases, or therapeutic HLGAGs of the invention are administered to subjects in need of such treatment. Effective amounts are those amounts which will result in a desired reduction in cellular proliferation or metastasis without causing other medically unacceptable side effects. Such amounts can be determined with no more than routine experimentation. It is believed that doses ranging from 1 nanogram/kilogram to 100 milligrams/kilogram, depending upon the mode of administration, will be effective. The absolute amount will depend upon a variety of factors (including whether the administration is in conjunction with other methods of treatment, the number of doses and individual patient parameters including age, physical condition, size and weight) and can be determined with routine experimentation. It is preferred generally that a maximum dose be used, that is, the highest safe dose according to sound medical judgment. The mode of administration may be any medically acceptable mode including oral, subcutaneous, intravenous, etc.

In some aspects of the invention the effective amount of heparinase III is that amount effective to prevent invasion of a tumor cell across a barrier. The invasion and h6metastasis of cancer is a complex process which involves changes in cell adhesion properties which allow a transformed cell to invade and migrate through the extracellular matrix (ECM) and acquire anchorage-independent growth properties. Liotta, L. A., et al., Cell 64:327-336 (1991). Some of these changes occur at focal adhesions, which are cell/ECM contact points containing membrane-associated, cytoskeletal, and intracellular signaling molecules. Metastatic disease occurs when the disseminated foci of tumor cells seed a tissue which supports their growth and propagation, and this secondary spread of tumor cells is responsible for the morbidity and mortality associated with the majority of cancers. Thus the term "metastasis" as used herein refers to the invasion and migration of tumor cells away from the primary tumor site.

The barrier for the tumor cells may be an artificial barrier in vitro or a natural barrier in vivo. In vitro barriers include e but are not limited to extracellular matrix coated membranes, such as Matrigel. Thus the heparinase compositions can be tested for their ability to inhibit tumor cell invasion in a Matrigel invasion assay system as described in detail by Parish, C. R., et al., "A Basement-Membrane Permeability Assay which Correlates with the Metastatic Potential of Tumour Cells," Int. J. Cancer (1992) 52:378-383. Matrigel is a reconstituted basement membrane containing type IV collagen, laminin, heparan sulfate proteoglycans such as perlecan, which bind to and localize bFGF, vitronectin as well as transforming growth factor-.beta. (TGF-.beta.), urokinase-type plasminogen activator (uPA), tissue plasminogen activator (tPA), and the serpin known as plasminogen activator inhibitor type 1 (PAI-1). Other in vitro and in vivo assays for metastasis have been described in the prior art, see, e.g., U.S. Pat. No. 5,935,850, issued on Aug. 10, 1999, which is incorporated by reference. An in vivo barrier refers to a cellular barrier present in the body of a subject.

In general, when administered for therapeutic purposes, the formulations of the invention are applied in pharmaceutically acceptable solutions. Such preparations may routinely contain pharmaceutically acceptable concentrations of salt, buffering agents, preservatives, compatible carriers, adjuvants, and optionally other therapeutic ingredients.

The compositions of the invention may be administered per se (neat) or in the form of a pharmaceutically acceptable salt. When used in medicine the salts should be pharmaceutically acceptable, but non-pharmaceutically acceptable salts may conveniently be used to prepare pharmaceutically acceptable salts thereof and are not excluded from the scope of the invention. Such pharmacologically and pharmaceutically acceptable salts include, but are not limited to, those prepared from the following acids: hydrochloric, hydrobromic, sulphuric, nitric, phosphoric, maleic, acetic, salicylic, p-toluene sulphonic, tartaric, citric, methane sulphonic, formic, malonic, succinic, naphthalene-2-sulphonic, and benzene sulphonic. Also, pharmaceutically acceptable salts can be prepared as alkaline metal or alkaline earth salts, such as sodium, potassium or calcium salts of the carboxylic acid group.

Suitable buffering agents include: acetic acid and a salt (1-2% W/V); citric acid and a salt (1-3% W/V); boric acid and a salt (0.5-2.5% W/V); and phosphoric acid and a salt (0.8-2% W/V). Suitable preservatives include benzalkonium chloride (0.003-0.03% W/V); chlorobutanol (0.3-0.9% W/V); parabens (0.01-0.25% W/V) and thimerosal (0.004-0.02% W/V).

The present invention provides pharmaceutical compositions, for medical use, which comprise native heparinase III, modified heparinases of the invention, or therapeutic HLGAG fragments together with one or more pharmaceutically acceptable carriers and optionally other therapeutic ingredients. The term "pharmaceutically-acceptable carrier" as used herein, and described more fully below, means one or more compatible solid or liquid filler, dilutants or encapsulating substances which are suitable for administration to a human or other animal. In the present invention, the term "carrier" denotes an organic or inorganic ingredient, natural or synthetic, with which the active ingredient is combined to facilitate the application. The components of the pharmaceutical compositions also are capable of being commingled with the modified heparinases of the present invention, and with each other, in a manner such that there is no interaction which would substantially impair the desired pharmaceutical efficiency.

A variety of administration routes are available. The particular mode selected will depend, of course, upon the particular modified heparinase selected, the particular condition being treated and the dosage required for therapeutic efficacy. The methods of this invention, generally speaking, may be practiced using any mode of administration that is medically acceptable, meaning any mode that produces effective levels of an immune response without causing clinically unacceptable adverse effects. A preferred mode of administration is a parenteral route. The term "parenteral" includes subcutaneous injections, intravenous, intramuscular, intraperitoneal, intra sternal injection or infusion techniques. Other modes of administration include oral, mucosal, rectal, vaginal, sublingual, intranasal, intratracheal, inhalation, ocular, transdermal, etc.

For oral administration, the compounds can be formulated readily by combining the active compound(s) with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a subject to be treated. Pharmaceutical preparations for oral use can be obtained as solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Optionally the oral formulations may also be formulated in saline or buffers for neutralizing internal acid conditions or may be administered without any carriers.

Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. Microspheres formulated for oral administration may also be used. Such microspheres have been well defined in the art. All formulations for oral administration should be in dosages suitable for such administration.

For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention may be conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebulizer, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of e.g. gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch.

The compounds, when it is desirable to deliver them systemically, may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampoules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.

Alternatively, the active compounds may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal or vaginal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides.

In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols.

Suitable liquid or solid pharmaceutical preparation forms are, for example, aqueous or saline solutions for inhalation, microencapsulated, encochleated, coated onto microscopic gold particles, contained in liposomes, nebulized, aerosols, pellets for implantation into the skin, or dried onto a sharp object to be scratched into the skin. The pharmaceutical compositions also include granules, powders, tablets, coated tablets, (micro)capsules, suppositories, syrups, emulsions, suspensions, creams, drops or preparations with protracted release of active compounds, in whose preparation excipients and additives and/or auxiliaries such as disintegrants, binders, coating agents, swelling agents, lubricants, flavorings, sweeteners or solubilizers are customarily used as described above. The pharmaceutical compositions are suitable for use in a variety of drug delivery systems. For a brief review of methods for drug delivery, see Langer, Science 249:1527-1533, 1990, which is incorporated herein by reference.

The compositions may conveniently be presented in unit dosage form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active modified heparinase into association with a carrier which constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing the polymer into association with a liquid carrier, a finely divided solid carrier, or both, and then, if necessary, shaping the product. The polymer may be stored lyophilized.

Other delivery systems can include time-release, delayed release or sustained release delivery systems. Such systems can avoid repeated administrations of the heparinases of the invention, increasing convenience to the subject and the physician. Many types of release delivery systems are available and known to those of ordinary skill in the art. They include polymer based systems such as polylactic and polyglycolic acid, polyanhydrides and polycaprolactone; nonpolymer systems that are lipids including sterols such as cholesterol, cholesterol esters and fatty acids or neutral fats such as mono-, di and triglycerides; hydrogel release systems; silastic systems; peptide based systems; wax coatings, compressed tablets using conventional binders and excipients, partially fused implants and the like. Specific examples include, but are not limited to: (a) erosional systems in which the polysaccharide is contained in a form within a matrix, found in U.S. Pat. Nos. 4,452,775 (Kent); U.S. Pat. No. 4,667,014 (Nestor et al.); and U.S. Pat. Nos. 4,748,034 and 5,239,660 (Leonard) and (b) diffusional systems in which an active component permeates at a controlled rate through a polymer, found in U.S. Pat. No. 3,832,253 (Higuchi et al.) and U.S. Pat. No. 3,854,480 (Zaffaroni). In addition, a pump-based hardware delivery system can be used, some of which are adapted for implantation.

A subject is any human or non-human vertebrate, e.g., dog, cat, horse, cow, pig.

When administered to a patient undergoing cancer treatment, the heparinase III compounds may be administered in cocktails containing other anti-cancer agents. The compounds may also be administered in cocktails containing agents that treat the side-effects of radiation therapy, such as anti-emetics, radiation protectants, etc.

Anti-cancer drugs that can be co-administered with the compounds of the invention include, but are not limited to Acivicin; Aclarubicin; Acodazole Hydrochloride; Acronine; Adriamycin; Adozelesin; Aldesleukin; Altretamine; Ambomycin; Ametantrone Acetate; Aminoglutethimide; Amsacrine; Anastrozole; Anthramycin; Asparaginase; Asperlin; Azacitidine; Azetepa; Azotomycin; Batimastat; Benzodepa; Bicalutamide; Bisantrene Hydrochloride; Bisnafide Dimesylate; Bizelesin; Bleomycin Sulfate; Brequinar Sodium; Bropirimine; Busulfan; Cactinomycin; Calusterone; Caracemide; Carbetimer; Carboplatin; Carmustine; Carubicin Hydrochloride; Carzelesin; Cedefingol; Chlorambucil; Cirolemycin; Cisplatin; Cladribine; Crisnatol Mesylate; Cyclophosphamide; Cytarabine; Dacarbazine; Dactinomycin; Daunorubicin Hydrochloride; Decitabine; Dexormaplatin; Dezaguanine; Dezaguanine Mesylate; Diaziquone; Docetaxel; Doxorubicin; Doxorubicin Hydrochloride; Droloxifene; Droloxifene Citrate; Dromostanolone Propionate; Duazomycin; Edatrexate; Eflornithine Hydrochloride; Elsamitrucin; Enloplatin; Enpromate; Epipropidine; Epirubicin Hydrochloride; Erbulozole; Esorubicin Hydrochloride; Estramustine; Estramustine Phosphate Sodium; Etanidazole; Etoposide; Etoposide Phosphate; Etoprine; Fadrozole Hydrochloride; Fazarabine; Fenretinide; Floxuridine; Fludarabine Phosphate; Fluorouracil; Flurocitabine; Fosquidone; Fostriecin Sodium; Gemcitabine; Gemcitabine Hydrochloride; Hydroxyurea; Idarubicin Hydrochloride; Ifosfamide; Ilmofosine; Interferon Alfa-2a; Interferon Alfa-2b; Interferon Alfa-n1; Interferon Alfa-n3; Interferon Beta-I a; Interferon Gamma-I b; Iproplatin; Irinotecan Hydrochloride; Lanreotide Acetate; Letrozole; Leuprolide Acetate; Liarozole Hydrochloride; Lometrexol Sodium; Lomustine; Losoxantrone Hydrochloride; Masoprocol; Maytansine; Mechlorethamine Hydrochloride; Megestrol Acetate; Melengestrol Acetate; Melphalan; Menogaril; Mercaptopurine; Methotrexate; Methotrexate Sodium; Metoprine; Meturedepa; Mitindomide; Mitocarcin; Mitocromin; Mitogillin; Mitomalcin; Mitomycin; Mitosper; Mitotane; Mitoxantrone Hydrochloride; Mycophenolic Acid; Nocodazole; Nogalamycin; Ormaplatin; Oxisuran; Paclitaxel; Pegaspargase; Peliomycin; Pentamustine; Peplomycin Sulfate; Perfosfamide; Pipobroman; Piposulfan; Piroxantrone Hydrochloride; Plicamycin; Plomestane; Porfimer Sodium; Porfiromycin; Prednimustine; Procarbazine Hydrochloride; Puromycin; Puromycin Hydrochloride; Pyrazofurin; Riboprine; Rogletimide; Safingol; Safingol Hydrochloride; Semustine; Simtrazene; Sparfosate Sodium; Sparsomycin; Spirogermanium Hydrochloride; Spiromustine; Spiroplatin; Streptonigrin; Streptozocin; Sulofenur; Talisomycin; Tecogalan Sodium; Tegafur; Teloxantrone Hydrochloride; Temoporfin; Teniposide; Teroxirone; Testolactone; Thiamiprine; Thioguanine; Thiotepa; Tiazofurin; Tirapazamine; Topotecan Hydrochloride; Toremifene Citrate; Trestolone Acetate; Triciribine Phosphate; Trimetrexate; Trimetrexate Glucuronate; Triptorelin; Tubulozole Hydrochloride; Uracil Mustard; Uredepa; Vapreotide; Verteporfin; Vinblastine Sulfate; Vincristine Sulfate; Vindesine; Vindesine Sulfate; Vinepidine Sulfate; Vinglycinate Sulfate; Vinleurosine Sulfate; Vinorelbine Tartrate; Vinrosidine Sulfate; Vinzolidine Sulfate; Vorozole; Zeniplatin; Zinostatin; Zorubicin Hydrochloride.

The heparinase III compounds may also be linked to a targeting molecule. A targeting molecule is any molecule or compound which is specific for a particular cell or tissue and which can be used to direct the heparinase III to the cell or tissue. Preferably the targeting molecule is a molecule which specifically interacts with a cancer cell or a tumor. For instance, the targeting molecule may be a protein or other type of molecule that recognizes and specifically interacts with a tumor antigen.

Tumor-antigens include Melan-A/M.quadrature.ART-1, Dipeptidyl peptidase IV (DPPIV), adenosine deaminase-binding protein (ADAbp), cyclophilin b, Colorectal associated antigen (CRC)--C017-1A/GA733, Carcinoembryonic Antigen (CEA) and its immunogenic epitopes CAP-1 and CAP-2, etv6, aml1, Prostate Specific Antigen (PSA) and its immunogenic epitopes PSA-1, PSA-2, and PSA-3, prostate-specific membrane antigen (PSMA), T-cell receptor/CD3-zeta chain, MAGE-family of tumor antigens (e.g., MAGE-A1, MAGE-A2, MAGE-A3, MAGE-A4, MAGE-A5, MAGE-A6, MAGE-A7, MAGE-A8, MAGE-A9, MAGE-A10, MAGE-A11, MAGE-A12, MAGE-Xp2 (MAGE-B2), MAGE-Xp3 (MAGE-B3), MAGE-Xp4 (MAGE-B4), MAGE-C1, MAGE-C2, MAGE-C3, MAGE-C4, MAGE-C5), GAGE-family of tumor antigens (e.g., GAGE-1, GAGE-2, GAGE-3, GAGE-4, GAGE-5, GAGE-6, GAGE-7, GAGE-8, GAGE-9), BAGE, RAGE, LAGE-B, NAG, GnT-V, MUM-1, CDK4, tyrosinase, p53, MUC family, HER2/neu, p2lras, RCAS1, .alpha.-fetoprotein, E-cadherin, .alpha.-catenin, .beta.-catenin and .gamma.-catenin, p120ctn, gp100.sup.Pmel117, PRAME, NY-ESO-1, brain glycogen phosphorylase, SSX-1, SSX-2 (HOM-MEL-40), SSX-1, SSX-4, SSX-5, SCP-1, CT-7, cdc27, adenomatous polyposis coli protein (APC), fodrin, P1A, Connexin 37, Ig-idiotype, p15, gp75, GM2 and GD2 gangliosides, viral products such as human papilloma virus proteins, Smad family of tumor antigens, lmp-1, EBV-encoded nuclear antigen (EBNA)-1, and c-erbB-2.

Examples of tumor antigens which bind to either or both MHC class I and MHC class II molecules, see the following references: Coulie, Stem Cells 13:393-403, 1995; Traversari et al., J. Exp. Med. 176:1453-1457, 1992; Chaux et al., J. Immunol. 163:2928-2936, 1999; Fujie et al., Int. J. Cancer 80:169-172, 1999; Tanzarella et al., Cancer Res. 59:2668-2674, 1999; van der Bruggen et al., Eur. J. Immunol. 24:2134-2140, 1994; Chaux et al., J. Exp. Med. 189:767-778, 1999; Kawashima et al, Hum. Immunol. 59:1-14, 1998; Tahara et al., Clin. Cancer Res. 5:2236-2241, 1999; Gaugler et al., J. Exp. Med. 179:921-930, 1994; van der Bruggen et al., Eur. J. Immunol. 24:3038-3043, 1994; Tanaka et al., Cancer Res. 57:4465-4468, 1997; Oiso et al., Int. J. Cancer 81:387-394, 1999; Herman et al., Immunogenetics 43:377-383, 1996; Manici et al., J. Exp. Med. 189:871-876, 1999; Duffour et al., Eur. J. Immunol. 29:3329-3337, 1999; Zorn et al., Eur. J. Immunol. 29:602-607, 1999; Huang et al., J. Immunol.162:6849-6854, 1999; Boel et al., Immunity 2:167-175, 1995; Van den Eynde et al., J. Exp. Med. 182:689-698, 1995; De Backer et al., Cancer Res. 59:3157-3165, 1999; Jager et al., J. Exp. Med. 187:265-270, 1998; Wang et al., J. Immunol. 161:3596-3606, 1998; Aarnoudse et al., Int. J. Cancer 82:442-448, 1999; Guilloux et al., J. Exp. Med. 183:1173-1183, 1996; Lupetti et al., J. Exp. Med. 188:1005-1016, 1998; Wolfel et al., Eur. J. Immunol. 24:759-764, 1994; Skipper et al., J. Exp. Med. 183:527-534, 1996; Kang et al., J. Immunol. 155:1343-1348, 1995; Morel et al., Int. J. Cancer 83:755-759, 1999; Brichard et al., Eur. J. Immunol. 26:224-230, 1996; Kittlesen et al., J. Immunol. 160:2099-2106, 1998; Kawakami et al., J. Immunol. 161:6985-6992, 1998; Topalian et al., J. Exp. Med. 183:1965-1971, 1996; Kobayashi et al., Cancer Research 58:296-301, 1998; Kawakami et al., J. Immunol. 154:3961-3968, 1995; Tsai et al., J. Immunol. 158:1796-1802, 1997; Cox et al., Science 264:716-719, 1994; Kawakami et al., Proc. Natl. Acad. Sci. USA 91:6458-6462, 1994; Skipper et al., J. Immunol. 157:5027-5033, 1996; Robbins et al., J. Immunol. 159:303-308, 1997; Castelli et al, J. Immunol. 162:1739-1748, 1999; Kawakami et al., J. Exp. Med. 180:347-352, 1994; Castelli et al., J. Exp. Med. 181:363-368, 1995; Schneider et al., Int. J. Cancer 75:451-458, 1998; Wang et al., J. Exp. Med. 183:1131-1140, 1996; Wang et al., J. Exp. Med. 184:2207-2216, 1996; Parkhurst et al., Cancer Research 58:4895-4901, 1998; Tsang et al., J. Natl Cancer Inst 87:982-990, 1995; Correale et al., J. Natl Cancer Inst 89:293-300, 1997; Coulie et al., Proc. Natl. Acad. Sci. USA 92:7976-7980, 1995; Wolfel et al., Science 269:1281-1284, 1995; Robbins et al., J. Exp. Med. 183:1185-1192, 1996; Brandle et al., J. Exp. Med. 183:2501-2508, 1996; ten Bosch et al., Blood 88:3522-3527, 1996; Mandruzzato et al., J. Exp. Med. 186:785-793, 1997; Gueguen et al., J. Immunol. 160:6188-6194, 1998; Gjertsen et al., Int. J. Cancer 72:784-790, 1997; Gaudin et al., J. Immunol. 162:1730-1738, 1999; Chiari et al., Cancer Res. 59:5785-5792, 1999; Hogan et al., Cancer Res. 58:5144-5150, 1998; Pieper et al., J. Exp. Med. 189:757-765, 1999; Wang et al., Science 284:1351-1354, 1999; Fisk et al., J. Exp. Med. 181:2109-2117, 1995; Brossart et al., Cancer Res. 58:732-736, 1998; Ropke et al., Proc. Natl. Acad. Sci. USA 93:14704-14707, 1996; Ikeda et al., Immunity 6:199-208, 1997; Ronsin et al., J. Immunol. 163:483-490, 1999; Vonderheide et al., Immunity 10:673-679,1999. These antigens as well as others are disclosed in PCT Application PCT/US98/18601.

One of ordinary skill in the art, in light of the present disclosure, is enabled to produce substantially pure preparations of any of the native or modified heparinases by standard technology, including recombinant technology, direct synthesis, mutagenesis, etc. For instance, using recombinant technology one may substitute appropriate codons in SEQ ID NO: 1 to produce the desired amino acid substitutions by standard site-directed mutagenesis techniques. Obviously, one may also use any sequence which differs from SEQ ID NO: 1 only due to the degeneracy of the genetic code as the starting point for site directed mutagenesis. The mutated nucleic acid sequence may then be ligated into an appropriate expression vector and expressed in a host such as F. heparinum or E. coli. The resultant modified heparinase may then be purified by techniques well known in the art, including those disclosed below and in Sasisekharan, et al. (1993). As used herein, the term "substantially pure" means that the proteins are essentially free of other substances to an extent practical and appropriate for their intended use. In particular, the proteins are sufficiently pure and are sufficiently free from other biological constituents of their hosts cells so as to be useful in, for example, protein sequencing, or producing pharmaceutical preparations.

In another set of embodiments an isolated nucleic acid encoding the substantially pure modified heparinase of the invention is provided. As used herein with respect to nucleic acids, the term "isolated" means: (i) amplified in vitro by, for example, polymerase chain reaction (PCR); (ii) recombinantly produced by cloning; (iii) purified, as by cleavage and gel separation; or (iv) synthesized by, for example, chemical synthesis. An isolated nucleic acid is one which is readily manipulable by recombinant DNA techniques well known in the art. Thus, a nucleotide sequence contained in a vector in which 5' and 3' restriction sites are known or for which polymerase chain reaction (PCR) primer sequences have been disclosed is considered isolated but a nucleic acid sequence existing in its native state in its natural host is not. An isolated nucleic acid may be substantially purified, but need not be. For example, a nucleic acid that is isolated within a cloning or expression vector is not pure in that it may comprise only a tiny percentage of the material in the cell in which it resides. Such a nucleic acid is isolated, however, as the term is used herein because it is readily manipulable by standard techniques known to those of ordinary skill in the art.

As used herein, a coding sequence and regulatory sequences are said to be "operably joined" when they are covalently linked in such a way as to place the expression or transcription of the coding sequence under the influence or control of the regulatory sequences. If it is desired that the coding sequences be translated into a functional protein the coding sequences are operably joined to regulatory sequences. Two DNA sequences are said to be operably joined if induction of a promoter in the 5' regulatory sequences results in the transcription of the coding sequence and if the nature of the linkage between the two DNA sequences does not (1) result in the introduction of a frame-shift mutation, (2) interfere with the ability of the promoter region to direct the transcription of the coding sequences, or (3) interfere with the ability of the corresponding RNA transcript to be translated into a protein. Thus, a promoter region would be operably joined to a coding sequence if the promoter region were capable of effecting transcription of that DNA sequence such that the resulting transcript might be translated into the desired protein or polypeptide.

The precise nature of the regulatory sequences needed for gene expression may vary between species or cell types, but shall in general include, as necessary, 5' non-transcribing and 5' non-translating sequences involved with initiation of transcription and translation respectively, such as a TATA box, capping sequence, CAAT sequence, and the like. Especially, such 5' non-transcribing regulatory sequences will include a promoter region which includes a promoter sequence for transcriptional control of the operably joined gene. Promoters may be constitutive or inducible. Regulatory sequences may also include enhancer sequences or upstream activator sequences, as desired.

As used herein, a "vector" may be any of a number of nucleic acids into which a desired sequence may be inserted by restriction and ligation for transport between different genetic environments or for expression in a host cell. Vectors are typically composed of DNA although RNA vectors are also available. Vectors include, but are not limited to, plasmids and phagemids. A cloning vector is one which is able to replicate in a host cell, and which is further characterized by one or more endonuclease restriction sites at which the vector may be cut in a determinable fashion and into which a desired DNA sequence may be ligated such that the new recombinant vector retains its ability to replicate in the host cell. In the case of plasmids, replication of the desired sequence may occur many times as the plasmid increases in copy number within the host bacterium, or just a single time per host as the host reproduces by mitosis. In the case of phage, replication may occur actively during a lytic phase or passively during a lysogenic phase. An expression vector is one into which a desired DNA sequence may be inserted by restriction and ligation such that it is operably joined to regulatory sequences and may be expressed as an RNA transcript. Vectors may further contain one or more marker sequences suitable for use in the identification of cells which have or have not been transformed or transfected with the vector. Markers include, for example, genes encoding proteins which increase or decrease either resistance or sensitivity to antibiotics or other compounds, genes which encode enzymes whose activities are detectable by standard assays known in the art (e.g., .beta.-galactosidase or alkaline phosphatase), and genes which visibly affect the phenotype of transformed or transfected cells, hosts, colonies or plaques. Preferred vectors are those capable of autonomous replication and expression of the structural gene products present in the DNA segments to which they are operably joined.

As used herein, the term "stringent conditions" refers to parameters known to those skilled in the art. One example of stringent conditions is hybridization at 65.degree. C. in hybridization buffer (3.5.times.SSC, 0.02% Ficoll, 0.02% polyvinyl pyrolidone, 0.02% bovine serum albumin (BSA), 25 mM NaH.sub.2PO.sub.4 (pH7), 0.5% SDS, 2 mM EDTA). SSC is 0.15M sodium chloride/0.15M sodium citrate, pH7; SDS is sodium dodecylsulphate; and EDTA is ethylene diamine tetra acetic acid. There are other conditions, reagents, and so forth which can be used, which result in the same degree of stringency. A skilled artisan will be familiar with such conditions, and thus they are not given here. The skilled artisan also is familiar with the methodology for screening cells for expression of such molecules, which then are routinely isolated, followed by isolation of the pertinent nucleic acid. Thus, homologs and alleles of the substantially pure modified heparinases of the invention, as well as nucleic acids encoding the same, may be obtained routinely, and the invention is not intended to be limited to the specific sequences disclosed.

For prokaryotic systems, plasmid vectors that contain replication sites and control sequences derived from a species compatible with the host may be used. Examples of suitable plasmid vectors include pBR322, pUC18, pUC19 and the like; suitable phage or bacteriophage vectors include .lamda.gt10, .lamda.gt11 and the like; and suitable virus vectors include pMAM-neo, pKRC and the like. Preferably, the selected vector of the present invention has the capacity to autonomously replicate in the selected host cell. Useful prokaryotic hosts include bacteria such as E. coli, Flavobacterium heparinum, Bacillus, Streptomyces, Pseudomonas, Salmonella, Serratia, and the like.

To express the substantially pure modified heparinases of the invention in a prokaryotic cell, it is necessary to operably join the nucleic acid sequence of a substantially pure modified heparinase of the invention to a functional prokaryotic promoter. Such promoter may be either constitutive or, more preferably, regulatable (i.e., inducible or derepressible). Examples of constitutive promoters include the int promoter of bacteriophage .lamda., the bla promoter of the .beta.-lactamase gene sequence of pBR322, and the CAT promoter of the chloramphenicol acetyl transferase gene sequence of pPR325, and the like. Examples of inducible prokaryotic promoters include the major right and left promoters of bacteriophage .lamda. (P.sub.L and P.sub.R), the trp, recA, lacZ, lacI, and gal promoters of E. coli, the .alpha.-amylase (Ulmanen et al., J. Bacteriol. 162:176-182 (1985)) and the .xi.-28-specific promoters of B. subtilis (Gilman et al., Gene sequence 32:11-20 (1984)), the promoters of the bacteriophages of Bacillus (Gryczan, In: The Molecular Biology of the Bacilli, Academic Press, Inc., NY (1982)), and Streptomyces promoters (Ward et al., Mol. Gen. Genet. 203:468-478 (1986)).

Prokaryotic promoters are reviewed by Glick (J. Ind. Microbiol. 1:277-282 (1987)); Cenatiempo (Biochimie 68:505-516 (1986)); and Gottesman (Ann. Rev. Genet. 18:415-442 (1984)).

Proper expression in a prokaryotic cell also requires the presence of a ribosome binding site upstream of the encoding sequence. Such ribosome binding sites are disclosed, for example, by Gold et al. (Ann. Rev. Microbiol. 35:365-404 (1981)).

Because prokaryotic cells will not produce the modified heparinases of the invention with normal eukaryotic glycosylation, expression of the modified heparinases of the invention of the invention by eukaryotic hosts is possible when glycosylation is desired. Preferred eukaryotic hosts include, for example, yeast, fungi, insect cells, and mammalian cells, either in vivo or in tissue culture. Mammalian cells which may be useful as hosts include HeLa cells, cells of fibroblast origin such as VERO or CHO-K1, or cells of lymphoid origin, such as the hybridoma SP2/0-AG14 or the myeloma P3x63Sg8, and their derivatives. Preferred mammalian host cells include SP2/0 and J558L, as well as neuroblastoma cell lines such as IMR 332 that may provide better capacities for correct post-translational processing. Embryonic cells and mature cells of a transplantable organ also are useful according to some aspects of the invention.

In addition, plant cells are also available as hosts, and control sequences compatible with plant cells are available, such as the nopaline synthase promoter and polyadenylation signal sequences.

Another preferred host is an insect cell, for example in Drosophila larvae. Using insect cells as hosts, the Drosophila alcohol dehydrogenase promoter can be used (Rubin, Science 240:1453-1459 (1988)). Alternatively, baculovirus vectors can be engineered to express large amounts of the modified heparinases of the invention in insects cells (Jasny, Science 238:1653 (1987); Miller et al., In: Genetic Engineering (1986), Setlow, J. K., et al., eds., Plenum, Vol. 8, pp. 277-297).

Any of a series of yeast gene sequence expression systems which incorporate promoter and termination elements from the genes coding for glycolytic enzymes and which are produced in large quantities when the yeast are grown in media rich in glucose may also be utilized. Known glycolytic gene sequences can also provide very efficient transcriptional control signals. Yeast provide substantial advantages in that they can also carry out post-translational peptide modifications. A number of recombinant DNA strategies exist which utilize strong promoter sequences and high copy number plasmids which can be utilized for production of the desired proteins in yeast. Yeast recognize leader sequences on cloned mammalian gene sequence products and secrete peptides bearing leader sequences (i.e., pre-peptides).

A wide variety of transcriptional and translational regulatory sequences may be employed, depending upon the nature of the host. The transcriptional and translational regulatory signals may be derived from viral sources, such as adenovirus, bovine papilloma virus, simian virus, or the like, where the regulatory signals are associated with a particular gene sequence which has a high level of expression. Alternatively, promoters from mammalian expression products, such as actin, collagen, myosin, and the like, may be employed. Transcriptional initiation regulatory signals may be selected which allow for repression or activation, so that expression of the gene sequences can be modulated. Of interest are regulatory signals which are temperature-sensitive so that by varying the temperature, expression can be repressed or initiated, or which are subject to chemical (such as metabolite) regulation.

As discussed above, expression of the modified heparinases of the invention in eukaryotic hosts requires the use of eukaryotic regulatory regions. Such regions will, in general, include a promoter region sufficient to direct the initiation of RNA synthesis. Preferred eukaryotic promoters include, for example, the promoter of the mouse metallothionein I gene sequence (Hamer et al., J. Mol. Appl. Gen. 1:273-288 (1982)); the TK promoter of Herpes virus (McKnight, Cell 31:355-365 (1982)); the SV40 early promoter (Benoist et al., Nature (London) 290:304-310 (1981)); the yeast gal4 gene sequence promoter (Johnston et al., Proc. Natl. Acad. Sci. (USA) 79:6971-6975 (1982); Silveret al., Proc. Natl. Acad. Sci. (USA) 81:5951-5955 (1984)).

As is widely known, translation of eukaryotic mRNA is initiated at the codon which encodes the first methionine. For this reason, it is preferable to ensure that the linkage between a eukaryotic promoter and a DNA sequence which encodes the modified heparinases of the invention does not contain any intervening codons which are capable of encoding a methionine (i.e., AUG). The presence of such codons results either in the formation of a fusion protein (if the AUG codon is in the same reading frame as the modified heparinases of the invention coding sequence) or a frame-shift mutation (if the AUG codon is not in the same reading frame as the modified heparinases of the invention coding sequence).

In one embodiment, a vector is employed which is capable of integrating the desired gene sequences into the host cell chromosome. Cells which have stably integrated the introduced DNA into their chromosomes can be selected by also introducing one or more markers which allow for selection of host cells which contain the expression vector. The marker may, for example, provide for prototrophy to an auxotrophic host or may confer biocide resistance to, e.g., antibiotics, heavy metals, or the like. The selectable marker gene sequence can either be directly linked to the DNA gene sequences to be expressed, or introduced into the same cell by co-transfection. Additional elements may also be needed for optimal synthesis of the modified heparinases of the invention mRNA. These elements may include splice signals, as well as transcription promoters, enhancers, and termination signals. cDNA expression vectors incorporating such elements include those described by Okayama, Molec. Cell. Biol. 3:280 (1983).

In a preferred embodiment, the introduced sequence will be incorporated into a plasmid or viral vector capable of autonomous replication in the recipient host. Any of a wide variety of vectors may be employed for this purpose. Factors of importance in selecting a particular plasmid or viral vector include: the ease with which recipient cells that contain the vector may be recognized and selected from those recipient cells which do not contain the vector; the number of copies of the vector which are desired in a particular host; and whether it is desirable to be able to "shuttle" the vector between host cells of different species. Preferred prokaryotic vectors include plasmids such as those capable of replication in E. coli (such as, for example, pBR322, ColE1, pSC101, pACYC 184, and .pi.VX. Such plasmids are, for example, disclosed by Sambrook, et al. (Molecular Cloning: A Laboratory Manual, second edition, edited by Sambrook, Fritsch, & Maniatis, Cold Spring Harbor Laboratory, 1989)). Bacillus plasmids include pC194, pC221, pT127, and the like. Such plasmids are disclosed by Gryczan (In: The Molecular Biology of the Bacilli, Academic Press, NY (1982), pp. 307-329). Suitable Streptomyces plasmids include pIJ101 (Kendall et al., J. Bacteriol. 169:4177-4183 (1987)), and streptomyces bacteriophages such as .phi.C31 (Chater et al., In: Sixth International Symposium on Actinomycetales Biology, Akademiai Kaido, Budapest, Hungary (1986), pp. 45-54). Pseudomonas plasmids are reviewed by John et al. (Rev. Infect. Dis. 8:693-704 (1986)), and Izaki (Jpn. J. Bacteriol. 33:729-742 (1978)).

Preferred eukaryotic plasmids include, for example, BPV, EBV, SV40, 2-micron circle, and the like, or their derivatives. Such plasmids are well known in the art (Botstein et al., Miami Wntr. Symp. 19:265-274 (1982); Broach, In: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., p. 445-470 (1981); Broach, Cell 28:203-204 (1982); Bollon et al., J. Clin. Hematol. Oncol. 10:39-48 (1980); Maniatis, In: Cell Biology. A Comprehensive Treatise, Vol. 3, Gene Sequence Expression, Academic Press, NY, pp. 563-608 (1980)). Other preferred eukaryotic vectors are viral vectors. For example, and not by way of limitation, the pox virus, herpes virus, adenovirus and various retroviruses may be employed. The viral vectors may include either DNA or RNA viruses to cause expression of the insert DNA or insert RNA. Additionally, DNA or RNA encoding the modified heparinases of the invention polypeptides may be directly injected into cells or may be impelled through cell membranes after being adhered to microparticles.

Once the vector or DNA sequence containing the construct(s) has been prepared for expression, the DNA construct(s) may be introduced into an appropriate host cell by any of a variety of suitable means, i.e., transformation, transfection, conjugation, protoplast fusion, electroporation, calcium phosphate-precipitation, direct microinjection, and the like. After the introduction of the vector, recipient cells are grown in a selective medium, which selects for the growth of vector-containing cells. Expression of the cloned gene sequence(s) results in the production of the modified heparinases of the invention. This can take place in the transformed cells as such, or following the induction of these cells to differentiate (for example, by administration of bromodeoxyuracil to neuroblastoma cells or the like).
 

Claim 1 of 11 Claims

1. A method for preparing low molecular weight heparin (LMWH), comprising: contacting sample comprising a linear polysaccharide with a disaccharide repeat unit of a uronic acid [.alpha.-L-iduronic acid (I) or .beta.-D-glucuronic acid (G)] linked 1, 4 to .alpha.-D-hexosamine (H) with a protein comprising a modified heparinase III to produce LMWH, wherein the modified heparinase III has the amino acid sequence of the mature peptide of SEQ ID NO: 2, wherein at least one histidine residue selected from the group consisting of His36, His105, His110, His139, His152, His225, His234, His241, His424, His469, and His539 has been substituted with a residue selected from the group consisting of alanine, serine, tyrosine, threonine, and lysine.

____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.

 

 

     
[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]