Internet for Pharmaceutical and Biotech Communities
| Newsletter | Advertising |
 
 
 

  

Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 
   

 

  Pharmaceutical Patents  

 

Title:  Methods and compositions for nerve regeneration
United States Patent: 
7,374,760
Issued: 
May 20, 2008

Inventors:
 Zou; Yimin (Chicago, IL)
Assignee: 
The University of Chicago (Chicago, IL)
Appl. No.: 
10/847,972
Filed: 
May 17, 2004


 

George Washington University's Healthcare MBA


Abstract

Methods and compositions for modulating growth of a neuron with a Wnt, a Wnt-like substance, and/or a chemical compound affecting a Wnt signaling pathway are disclosed. Also disclosed are methods for identifying a substance that modulates growth of a neuron by obtaining a candidate substance and contacting the candidate substance with the neuron are disclosed and methods for modulating growth of a neuron in a subject using a Wnt, a Wnt-like substance, and/or a chemical compound affecting a Wnt signaling pathway. The Wnt, Wnt-like substance, and/or chemical compounds affecting a Wnt signaling pathway can be delivered to the subject using gene therapy techniques. Also disclosed are pharmaceutical compositions for modulating growth of a neuron in a mammal that include a Wnt or a Wnt-like substance. Methods and compositions for inhibiting growth of a neuron are also disclosed.

Description of the Invention

SUMMARY OF THE INVENTION

The inventor has found that Wnt proteins play a general role in anterior-posterior patterns of CNS axons, which connect the brain and the spinal cord.

The invention disclosed herein is based on the discovery of a molecular regulatory system involving Wnt proteins that is involved in the normal formation of the spinal cord axon connection. A chemoattractant gradient exists inside the spinal cord, and this chemoattractant gradient guides the anterior projection of post-crossing spinal cord commissural neurons along the A-P axis towards the brain during embryogensis. In particular, it has been discovered that several Wnt proteins can stimulate the extension of post-crossing but not pre-crossing commissural axons in the spinal cord. Wnt4 was found to be expressed in a decreasing A-P gradient in the floor plate of the spinal cord. sFRPs, inhibitors of Wnts, were found to disrupt the A-P pathfinding of post-crossing spinal cord commissural neurons. However, Wnt4 protein was found to rescue the anterior turn of the misrouting axons and also reorient axons posteriorly, suggesting that Wnt4 plays an instructive role in orienting directional axonal growth. In addition, commissural axons in fz3 knockout mice were found to display A-P guidance defects after midline crossing. In view of these findings, Wnt, Wnt-like substances, and/or chemical compounds affecting a Wnt signaling pathway can be used as novel agents to modulate neuronal growth, and can be used in new forms of treatment of diseases and conditions associated with neuronal dysfunction, such as SCI (Lyuksyotova et al., 2003).

The inventor has further found that a different set of Wnt proteins pattern the connections of corticospinal tract (CST) axons projecting along the opposite direction by a repulsive mechanism. CST axons project from the motor cortex of the brain to the spinal cord motor circuits and send voluntary movement signals from the brain to the body. Several Wnt genes were found to be expressed at the dorsal funiculus in an anterior-to-posterior decreasing gradient at the cervical spinal cord, where CST axons first enter the spinal cord and a anterior-to-posterior increasing gradient at the lumbar spinal cord level, forming a "half-pipe" gradient. Wnt1 and Wnt5a can repel CST axons in collagen gel assays. A repulsive Wnt receptor, Ryk (Oshikawa et al., 2003; Halford et al., 2000), is expressed in the CST axons and can be detected at the pyramidal decussation and in the dorsal funiculus. Antibodies against the ectodomain of Ryk can block the repulsion of Wnt1. Finally, intrathecal injection of a Wnt inhibitor, secreted Frizzled related protein 2 (sFRP2), at the rostral cervical level (C1 and C2), can inhibit the posterior growth of CST axons in vivo, leading to weaker grip strength.

The inventor has also found that Wnts play important roles in patterning the synaptic connections once they reach their target. This process of target selection ensures the specific neuron to neuron connection and is essential to the development of the functional circuits throughout the nervous system. Therefore, Wnts can be used to ensure specific synaptic reconnection in repair damaged neural circuits.

Certain embodiments of the present invention are generally concerned with methods for modulating growth of a neuron comprising contacting the neuron with a Wnt, a Wnt-like substance, and/or a chemical compound affecting a Wnt signaling pathway. The definitions of Wnt, Wnt-like substance, and chemical compound affecting a Wnt signaling pathway are discussed in detail in the specification below.

In the context of the invention, the terms "contact" or "contacting" are defined to mean any manner in which a compound is brought into a position where it can mediate, modulate, or inhibit the growth of a neuron. "Contacting" can comprise injecting a diffusable or non-diffusable substance into the neuron or an area adjacent a neuron. "Contacting" can comprise placing a nucleic acid encoding a compound into or close to a neuron or non-neuronal cell in a manner such that the nucleic acid is expressed to make the compound in a manner in which it can act upon the neuron. Those of skill in the art, following the teachings of this specification, will be able to contact neurons with substances in any manner.

The methods for modulating growth of a neuron may, in certain embodiments, be methods for stimulating growth of a neuron, methods for regenerating a damaged neuron, or methods for guiding growth of a neuron along the anterior-posterior axis. In other embodiments, the methods for modulating growth of a neuron are further defined as methods for directionally orienting axon growth of a neuron between the spinal cord and the brain.

The neuron to be modulated may be any neuron. However, in certain embodiments, the neuron is a neuron in the spinal cord that has been damaged. For example, the spinal cord may have been damaged by traumatic spinal cord injury. The damage may have resulted in impaired function of the neuron.

In certain embodiments, the method for modulating growth of a neuron is a method for modulating growth of a neuron in a subject. Although any subject is contemplated by the present invention, in certain embodiments the subject may be a patient with a disorder of the spinal cord. The disorder of the spinal cord may be any disorder, such as a traumatic spinal cord injury. The traumatic spinal cord injury may or may not have resulted in paralysis of the subject. In further embodiments, the patient is a patient with a neurodegenerative disease.

The neuron to be modulated can be a sensory or a motor neuron. In certain embodiments, the neuron is contacted with a Wnt, a Wnt-like substance, and/or a chemical compound affecting a Wnt signaling pathway that further involves exposing the neuron to a gradient of the Wnt, Wnt-like substance, and/or chemical compound affecting a Wnt signaling pathway. The gradient may be in the spinal cord, such as a decreasing anterior-posterior gradient within the spinal cord. In other embodiments, exposing the neuron to the gradient involves stimulating directionally-oriented axon growth of the neuron along the anterior-posterior axis. Any direction of axon growth is contemplated by the present invention. In certain embodiments, the axon growth is directed from the spinal cord to the brain, such as in the growth of neurons in ascending somatosensory pathways. In other embodiments, the axon growth is directed from the brain to the spinal cord, such as in the growth of neurons in descending motor pathways or other regulatory pathways. In further embodiments, the axon growth is directed along the spinothalamic pathway.

Any Wnt is contemplated by the present invention. A detailed discussion of Wnts is provided in the specification below. For example, the Wnt protein may be Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt 6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, or Wnt16 protein. One of skill in the art would be familiar with the range of Wnts available that are contemplated by the present invention. In certain embodiments, the Wnt is a Wnt1, Wnt4, Wnt5a, Wnt6, or Wnt7b protein. In certain embodiments, the Wnt protein will be a mammalian Wnt protein, for example a human or murine Wnt protein, or a homolog thereof from another vertebrate species.

In further embodiments, the Wnt-like substance is a Wnt polypeptide. Any Wnt polypeptide is contemplated by the present invention. For example, the Wnt polypeptide may be a Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt 6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, or Wnt16 polypeptide. One of skill in the art would be familiar with the range of Wnt polypeptides available that are contemplated by the present invention. In certain embodiments, the Wnt polypeptide is a Wnt1, Wnt4, Wnt5a, Wnt6, or Wnt7b polypeptide. Wnt polypeptides are discussed in greater detail in the specification below. In certain embodiments, the Wnt polypeptide will be a mammalian Wnt protein, for example a human or murine Wnt polypeptide, or a homolog thereof from another vertebrate species.

In further embodiments, the Wnt-like substance is a Wnt peptide. Any Wnt peptide is contemplated by the present invention. For example, the Wnt peptide may be a Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt 6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, or Wnt16 peptide. One of skill in the art would be familiar with the range of Wnt peptides available that are contemplated by the present invention. In certain embodiments, the Wnt peptide is a Wnt1, Wnt4, Wnt5a, Wnt6, or Wnt7b peptide. Wnt peptides are discussed in greater detail in the specification below. In certain embodiments, the Wnt protein will be a mammalian Wnt peptide, for example a human or murine Wnt peptide, or a homolog thereof from another vertebrate species.

In other embodiments, the Wnt-like substance is a mimetic of Wnt or a mutant Wnt. The definitions of mimetic Wnt and mutant Wnt are discussed in the specification below. Any Wnt mimetic is contemplated by the present invention. For example, the Wnt mimetic may be a Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt 6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, or Wnt16 mimetic. One of skill in the art would be familiar with the range of Wnt mimetics available that are contemplated by the present invention. In certain embodiments, the Wnt mimetic is a Wnt1, Wnt4, Wnt5a, Wnt6, or Wnt7b mimetic. In certain embodiments, the Wnt mimetic will be a mammalian Wnt mimetic, for example a human or murine Wnt mimetic, or a homolog thereof from another vertebrate species. Any Wnt mutant is contemplated by the present invention. For example, the Wnt mutant may be a Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt 6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, or Wnt16 mutant. One of skill in the art would be familiar with the range of Wnt mutants available that are contemplated by the present invention. In certain embodiments, the Wnt mutant is a Wnt1, Wnt4, Wnt5a, Wnt6, or Wnt7b mutant. In certain embodiments, the Wnt mutant will be a mammalian Wnt mutant, for example a human or murine Wnt mutant, or a homolog thereof from another vertebrate species. In other embodiments, the Wnt-like substance is a small molecule.

Further embodiments of the present invention involve use of chemical compounds affecting a Wnt signaling pathway to modulate growth of a neuron. The definition of such chemical compounds is described in the specification below. One of ordinary skill in the art would be familiar with the wide range of such compounds available which can modulate the Wnt signaling pathway. For example, in certain embodiments, the chemical compound affecting a Wnt signaling pathway is lithium.

The Wnt, Wnt-like substance, and/or chemical compound affecting a Wnt signaling pathway may include a fused amino acid sequence that is designed to facilitate incorporation of the polypeptide into the intracellular compartment of a cell. For example, the Wnt-like substance may include a polypeptide encoding an amino acid TAT sequence from HIV. In another example, the Wnt-like substance may include a polypeptide encoding an Antp amino acid sequence. In another example, the Wnt-like substance may include a polypeptide encoding a VP22 amino acid sequence from HSV.

In certain embodiments, the Wnt, Wnt-like substance, and/or chemical compound affecting a Wnt signaling pathway further includes an expression cassette comprising a promoter, active in a cell, operably linked to a polynucleotide encoding the Wnt, Wnt-like substance, and/or chemical compound affecting a Wnt signaling pathway. For example, the polypeptide may be a Wnt1, Wnt2, Wnt2b, Wnt3, Wnt3a, Wnt4, Wnt5a, Wnt5b, Wnt 6, Wnt7a, Wnt7b, Wnt8a, Wnt8b, Wnt9a, Wnt9b, Wnt10a, Wnt10b, Wnt11, or Wnt16 polypeptide. In certain embodiments, the Wnt polypeptide is a Wnt1, Wnt4, Wnt5a, Wnt6, or Wnt7b polypeptide. In other embodiments, the expression cassette is carried in a viral vector. Although any viral vector is contemplated by the present invention, examples include an adenoviral vector, a retroviral vector, an adeno-associated viral vector, a vaccinia viral vector, or a pox viral vector. In other embodiments, the expression cassette is carried in a nonviral vector, such as a liposome. One of skill in the art would be familiar with a wide range of viral and nonviral vectors available to be of use in the present invention.

Any promoter is contemplated for use in the present invention, as long as it facilitates expression of the polynucleotide. One of skill in the art would be familiar with the wide range of promoters available. For example, the promoter may be a constitutive promoter, an inducible promoter, or a tissue-specific promoter.

Certain embodiments of the present invention involve obtaining the Wnt, Wnt-like substance, and/or chemical compound affecting a Wnt signaling pathway from media of cultured cells. Although any cultured cells are contemplated by the present invention, in certain embodiments the cultured cells comprise an expression cassette including a promoter, active in the cultured cells, operably linked to a polynucleotide encoding Wnt, a Wnt-like substance, and/or a chemical compound affecting a Wnt signaling pathway. The characteristics of expression cassettes that have been previously discussed above apply to these embodiments of the present invention.

Further embodiments of the present invention provide for methods of inhibiting growth of a neuron. In certain embodiments, these methods involve contacting the neuron with a mutant Wnt.

Additional embodiments of the present invention include methods for identifying a substance that modulates growth of a neuron, including: (a) obtaining a candidate substance; (b) contacting said candidate substance with said neuron; and (c) measuring modulation of growth of said neuron. In certain embodiments, an explant assay is used in the methods for identifying a substance that modulates growth of a neuron. For example, the explant assay may involve use of cultured spinal cord. Any method to measure modulation of neuronal growth is contemplated by the present invention. However, in certain embodiments anterior turning of axons of the neuron is measured.

Any candidate substance is contemplated by the present invention. For example, the candidate substance may include a protein, a polypeptide, a peptide, mimetic, mutant, or a small molecule as described above. In a certain embodiments, the candidate substance is a Wnt-like substance, such as a Wnt peptide. Any Wnt peptide is contemplated by the present invention. For example, the Wnt peptide may be a Wnt1 peptide, a Wnt3 peptide, a Wnt4 peptide, a Wnt5a peptide, a Wnt6 peptide, or a Wnt7b peptide. In certain embodiments, the Wnt peptide is a mimetic of Wnt, such as a mimetic of Wnt1, a mimetic of Wnt3, a mimetic of Wnt4, a mimetic of Wnt5a, a mimetic of Wnt6, or a mimetic of Wnt7b. In a further embodiment, the Wnt-like substance is a mimetic of Wnt4. Alternatively, the Wnt-like substance may be a mutant Wnt, such as a mutant Wnt1 polypeptide, a mutant Wnt3 polypeptide, a mutant Wnt4 polypeptide, a mutant Wnt5a polypeptide, a mutant Wnt6 polypeptide, or a mutant Wnt7b polypeptide. In still further embodiments, the Wnt-like substance is a small molecule. In other embodiments, the chemical compound affecting a Wnt signaling pathway is a chemical compound that functionally or structurally resembles lithium.

Any method of measuring growth of a neuron is contemplated by the present methods for identifying modulators of nerve growth. These methods have been discussed above. For example, measuring modulation of growth of a neuron may further involve measuring stimulation of growth of the neuron, measuring regeneration of a damaged neuron, or measuring growth of said neuron along the anterior-posterior axis. In addition, these methods also involve method for directionally orienting axon growth of the neuron between the spinal cord and the brain.

The present invention also includes methods of modulating growth of a neuron in a subject, including: (a) providing a composition that includes a Wnt, a Wnt-like substance, and/or a chemical compound affecting a Wnt signaling pathway; and a pharmaceutical preparation suitable for delivery to the subject; and (b) administering the composition to the subject. The methods for modulating neuron growth of the present invention contemplate measurement of neuronal growth by any known means, as discussed above. For example, the method of modulating neuron growth may be defined as a method of promoting growth and regeneration of a neuron in a subject, a method of promoting axon growth and regeneration in a subject, or a method of promoting directionally-oriented axon growth in a subject. Directionally-oriented axon growth may be along the anterior-posterior axis such as from the spinal cord to the brain, or from the brain to the spinal cord.

The methods for modulating neuron growth in a subject contemplated by the present invention also include methods of treating a subject with a spinal cord disorder. Any spinal cord disorder is contemplated by the present invention. For example, the spinal cord disorder may be a traumatic spinal cord disorder, a disorder of motor and/or sensory neurons, a neurodegenerative disorder, or a disorder resulting in paralysis.

The methods of the present invention also contemplate exposing the neuron to a gradient of said Wnt, said Wnt-like substance, and/or said chemical compound affecting a Wnt signaling pathway. As discussed above, the gradient may be in the spinal cord, such as a decreasing gradient along the anterior-posterior axis.

Any Wnt, Wnt-like substance, and chemical compound affecting a Wnt signaling pathway, as discussed above and in the specification below, is contemplated by the present methods of modulating neuron growth in a subject. Mimetics and mutants of Wnts and Wnt-like substances are contemplated by the present invention, as are embodiments wherein the Wnt or Wnt-like substance further comprises an expression cassette comprising a promoter, active in a cell, operably linked to a polynucleotide encoding the Wnt or the Wnt-like substance. These expression cassettes have been discussed above, and are discussed in greater detail in later sections of this specification.

In certain embodiments, administering the composition of Wnt, Wnt-like substance, and/or chemical compound affecting a Wnt signaling pathway involves contacting the composition with the spinal cord of the subject. In certain embodiments, a gradient of the Wnt, Wnt-like substance, and/or chemical compound affecting a Wnt signaling pathway is created along the anterior-posterior axis. For example, the gradient may be between the spinal cord and the brain, such as a decreasing anterior-posterior gradient. In certain embodiments, the nerve cell is contacted with a modulator of neuronal growth identified by one of the previously described methods.

Certain embodiments of the present invention pertain to pharmaceutical compositions for modulating growth of a neuron in a mammal, including: (a) a Wnt, a Wnt-like substance, and/or a chemical compound affecting a Wnt signaling pathway; and (b) a pharmaceutical preparation suitable for delivery to the mammal. Neuronal growth may be modulated by any of the methods discussed above. In certain embodiments, the mammal is a human, such as a patient with a spinal cord disorder. Any Wnt, Wnt-like substance, and/or chemical compound affecting a Wnt-signaling pathway, as discussed above, is contemplated by the present invention. In certain embodiments, the composition comprises an expression cassette comprising a promoter, active in a cell, operably linked to a polynucleotide encoding the Wnt, the Wnt-like substance, and/or the chemical compound affecting a Wnt signaling pathway. Expression cassettes have been discussed above in the context of other embodiments of the present invention.

Additional embodiments of the present invention involve methods of inhibiting or controlling the growth of a neuron in a subject, by administering an inhibitor of a Wnt to the subject. In some cases, that inhibitor may be an sFRP, a Ryk protein, or an analog thereof. In general some such methods include: (a) providing a composition that includes an sFRP, an sFRP-like substance, a Ryk or a Ryk-like substance and a pharmaceutical preparation suitable for delivery to the subject; and (b) administering said composition to the subject. sFRPs are compounds that can affect a Wnt signaling pathway by binding to Wnt proteins with high affinity and blocking the interaction of Wnts with their receptors, the Frizzleds. sFRPs and sFRP-like substances are defined and discussed in detail below.

In certain embodiments, the composition comprises an sFRP protein. sFRPs are diffusable proteins that bind and modulate Wnts. Any sFRP protein from any species is contemplated by the present invention. For example, the sFRP protein may be sFRP1 protein, sFRP2 protein, or sFRP3 protein. In other embodiments, the sFRP-like substance is an sFRP polypeptide. For example, the sFRP polypeptide may be sFRP1 polypeptide, sFRP2 polypeptide, or sFRP3 polypeptide. In other embodiments, the sFRP-like substance is a peptide, such as sFRP1 peptide, sFRP2 peptide, or sFRP3 peptide. In further embodiments, the sFRP-like substance is a mutant sFRP, such as a mutant sFRP1 polypeptide, a mutant sFRP2 polypeptide, or a mutant sFRP3 polypeptide. In still further embodiments, the sFRP-like substance includes a small molecule that is functionally similar to a sFRP.

In other embodiments, the composition comprises a Ryk protein. Ryk is a receptor on neurons that binds Wnts and mediates repulsion of neurons in response to Wnts. Any Ryk protein or homolog from any species is contemplated by the present invention, for example, Drosphila Derailed protein may be employed in some embodiments. For example, the Ryk or Ryk-like substance may be a Ryk protein, polypeptide, peptide, mutant, or mimetic. In still further embodiments, the Ryk-like substance includes a small molecule that is functionally similar to a Ryk.

Other embodiments of the invention involve the contacting of a neuron with a combination of a Wnt and another substance, in order to provide a combination therapy. Such embodiments of the invention are important because, as discussed herein, the regeneration of neurons into a properly functioning spinal cord will often involve a combination of directional and other clues.

In some embodiments, one will wish to contact a neuron with a substance that blocks activity of a neuronal growth inhibitor. Such neuronal growth inhibitors include the myelin inhibitors Nogo, MAG, and Omgp, which have been shown to inhibit the growth of sensory neurons. Further, as discussed herein, Wnts can, if expressed in the adult spinal cord, inhibit the proper growth of CST motor neurons. In this regard, there are some Wnts that are expressed in normal adult spinal cords, and a variety of Wnts that may be is abnormally expressed in the neuron upon neuronal injury, as discussed below. In some embodiments of the invention, the substance that blocks the activity of the neuronal growth inhibitor is an antibody directed against a receptor for the inhibitor on the neuron or against the inhibitor itself. For example, such an antibody can be directed against a Wnt, Nogo, MAG, or OMgp. In some preferred embodiments, the antibody is directed against Wnt5a, Wnt8, or a Wnt that is expressed abnormally in the neuron due to injury, or against a receptor of any such Wnt. In other cases, the substance that blocks activity of a neuronal growth inhibitor is a Ryk, Ryk-like substance, sFRP or sFRP-like substance. In some preferred embodiments, one will want to block the activity of two or more inhibitors in the course of treating a neuron, spinal cord, and/or patient. For example, in order to allow an injured spinal cord comprising both injured sensory and injured motor neurons to regenerate in an appropriate manner, those of skill will understand that there may be a need to apply a compound to block the myelin inhibitors and prevent them from inhibiting the growth of sensory neurons, while also applying a compound to block Wnt inhibition of the growth of motor neurons.

The instant invention also involves contacting neurons with combinations of at least one Wnt and at least one other substance that attracts or repels neuronal growth. In some embodiments, the at least one other substance will be a substance attracts neuronal growth, for example, but not limited to a Wnt, Netrin, Shh, Cell adhesion molecule, Ig superfamily member, Cadherin, Integrin, EphrinB, ECM molecule, or HGF. In some embodiments, the at least one other substance will be a substance that repels neuronal growth, for example but not limited to, a Semaphorins, Netrin, Slit, Wnt, BMP, Ephrin, or member of the Ig superfamily. In many embodiments, contacting said neuron with a substance that attracts or repels neuronal growth will comprise exposing said neuron to a gradient of said substance. And, in some embodiments, the neuron will be exposed to a gradient of at least two such substances. In some cases, it will be beneficial to apply inhibitors of these substances that attract or repel neuronal growth at various portions of a regenerating spinal cord, in order to control the growth of the spinal cord, such inhibitors can be small molecules, peptides, proteins, or polypeptides that bind the substance, antibodies directed against the substance or a receptor of the substance, etc.

Some embodiments will involve the exposure of the neuron to a gradient of an attractive Wnt, some will involve exposure of the neuron to a gradient of a repulsive Wnt, some will involve exposure of the neuron to gradients of both attractive and repulsive Wnts. Attractive Wnts can include, but not be limited to, Wnt1, Wnt4, Wnt5a, Wnt 6, and Wnt7. Repulsive Wnts can include, but not be limited to Wnt5a or Wnt1. Those of skill in the art will be able to determine attractive and repulsive Wnts following the teachings herein, and will understand that the same Wnt may have an attractive property in regard to some contexts or some types of neurons and a repulsive property in regard to other contexts or types of neurons.

In some cases, it will be beneficial to apply one or more Wnt to the site of a spinal cord injury, such that the Wnt(s) will provide attractive guidance to those neurons that need to be attracted to the site of injury during regeneration and repellant guidance to those neurons that need to grow away from the site of injury during regeneration. In this regard, Wnt(s) applied at the site of an injury will provide directional guidance to axonal growth and cause sensory neurons to grow up through the site of the injury and repel motor neurons to grow down through the site of the injury. Further, in this embodiment, it may be beneficial to inhibit the Ryk pathway at the site of the injury so that motor neurons growing through the site of the injury are not inhibited by any Wnts present in the injury site, whether those Wnts are applied to the injury site, or expressed there as a result of normal adult Wnt expression or injury-induced Wnt expression. One may also apply a blocker of myelin inhibitors to the injury site, to prevent such inhibitors from impacting the growth of sensory neurons through the site.

Of course, combinations of Wnts, substances that block inhibitors of neuronal growth, and/or substances that attract or repel neuronal growth can be determined by those of skill in the art following the teaching contained herein. These various components of these combinations may be administered simultaneously, or separated by time. Individual components may be administered a single time or in a series of administrations. They may be administered in a single pharmaceutical composition, or in separate compositions. Those of skill in the art will be able to follow the teachings of this specification to determine appropriate dosage regimes and schedules of the various active agents.

Other embodiments of the invention involve pharmaceutical compositions comprising at least one Wnt, Wnt-like substance, or compound affecting a Wnt signaling pathway in combination with at least one substance that blocks an inhibitor of neuronal growth, and/or substance that attracts or repels neuronal growth. Further, kits comprising combinations of these various components, in separate or single containers are also within the scope of the invention.
 

Claim 1 of 14 Claims

1. A method for modulating the directional growth of a mammalian neuron comprising contacting the neuron with an inhibitor of a Wnt receptor, wherein the inhibitor is an anti-Ryk antibody.
 

____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.

 

 

     
[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]