Internet for Pharmaceutical and Biotech Communities
| Newsletter | Advertising |
 
 
 

  

Pharm/Biotech
Resources

Outsourcing Guide

Cont. Education

Software/Reports

Training Courses

Web Seminars

Jobs

Buyer's Guide

Home Page

Pharm Patents /
Licensing

Pharm News

Federal Register

Pharm Stocks

FDA Links

FDA Warning Letters

FDA Doc/cGMP

Pharm/Biotech Events

Consultants

Advertiser Info

Newsletter Subscription

Web Links

Suggestions

Site Map
 

 
   

 

  Pharmaceutical Patents  

 

Title:  Genetically engineered clostridial genes, proteins encoded by the engineered genes, and uses thereof
United States Patent: 
8,044,188
Issued: 
October 25, 2011

Inventors: 
Ichtchenko; Konstantin (Brooklyn, NY), Band; Philip A. (West Orange, NJ)
Assignee: 
New York University (New York, NY)
Appl. No.: 
12/762,909
Filed:
 April 19, 2010


 

Outsourcing Guide


Abstract

The present invention relates to an isolated Clostridial neurotoxin propeptide having a light chain region, a heavy chain region, where the light and heavy chain regions are linked by a disulfide bond, and an intermediate region connecting the light and heavy chain regions. An isolated nucleic acid molecule encoding a Clostridial neurotoxin propeptide is also disclosed. Also disclosed is an isolated, physiologically active Clostridial neurotoxin produced by cleaving a Clostridial neurotoxin propeptide, a vaccine or antidote thereof, and methods of immunizing against or treating for toxic effects of Clostridial neurotoxins. Methods of expressing recombinant physiologically active Clostridial neurotoxins are also disclosed. Also disclosed is a chimeric protein having a heavy chain region of a Clostridial neurotoxin and a protein with therapeutic functionality. A treatment method is also disclosed.

Description of the Invention

SUMMARY OF THE INVENTION

One aspect of the present invention relates to an isolated Clostridial neurotoxin propeptide. The propeptide has a light chain region, a heavy chain region, where the light and heavy chain regions are linked by a disulfide bond, and an intermediate region connecting the light and heavy chain regions. The intermediate region has a highly specific protease cleavage site which has three or more specific adjacent amino acid residues that are recognized by the highly specific protease in order to enable cleavage.

Another aspect of the present invention relates to an isolated nucleic acid molecule encoding the above Clostridial neurotoxin propeptide as well as expression systems and host cells containing this nucleic acid molecule.

A further aspect of the present invention relates to an isolated, physiologically active Clostridial neurotoxin produced by cleaving the above Clostridial neurotoxin propeptide. The propeptide is cleaved at the highly specific protease cleavage site. The light and heavy chain regions are linked by a disulfide bond.

Yet another aspect of the present invention relates to a vaccine or antidote including the above physiologically active, atoxic, Clostridial neurotoxin produced by cleaving the isolated Clostridial neurotoxin propeptide at the highly specific protease cleavage site. The light and heavy chain regions are linked by a disulfide bond.

Still another aspect of the present invention relates to method of immunizing a subject against toxic effects of a Clostridial neurotoxin. This method involves administering the above vaccine to the subject under conditions effective to immunize the subject against toxic effects of Clostridial neurotoxin.

Yet a further aspect of the present invention relates to a method of treating a subject for toxic effects of a Clostridial neurotoxin. This method involves administering an antidote comprising the above physiologically active, atoxic, Clostridial neurotoxin produced by cleaving the isolated Clostridial neurotoxin propeptide under conditions effective to treat the subject for toxic effects of Clostridial neurotoxin.

Still a further aspect of the present invention relates to a chimeric protein including a first protein or protein fragment having a heavy chain region of a Clostridial neurotoxin and a second protein or protein fragment linked to the first protein or protein fragment.

Another aspect of the present invention relates to a method of expressing a recombinant physiologically active Clostridial neurotoxin. This method involves providing a nucleic acid construct having a nucleic acid molecule encoding an isolated Clostridial neurotoxin propeptide. The nucleic acid construct has a heterologous promoter operably linked to the nucleic acid molecule and a 3' regulatory region operably linked to the nucleic acid molecule. The nucleic acid construct is introduced into a host cell under conditions effective to express the physiologically active Clostridial neurotoxin.

A further aspect of the present invention relates to a treatment method. This method involves contacting a patient with an isolated, physiologically active, toxic, Clostridial neurotoxin produced by cleaving the above isolated Clostridial neurotoxin propeptide.

The present invention relates to a genetic engineering platform that enables rationale design of therapeutic agents based on Clostridial toxin genes. The genetic engineering scheme is based on a two-step approach. For each Clostridial toxin serotype, gene constructs, expression systems, and purification schemes are designed that produce physiologically active, recombinant Clostridial neurotoxin. This ensures that the recombinant toxin derivatives retain structural features important for developing therapeutic candidates, or useful biologic reagents. Using the genetic constructs and expression systems developed by this paradigm, selective point mutations are then introduced to create atoxic recombinant derivatives. This two-step approach is designed to ensure that the recombinant toxin derivatives retain the immunogenicity, absorption profile, and trafficking pathways of native toxin, allowing the atoxic derivatives to have optimized therapeutic and biological properties. They also enable useful chimeric proteins to be created.

Genetically engineered forms of recombinant toxins which structurally and functionally mimic native toxins are superior to the toxoids currently in development for therapeutic purposes. They provide new approaches which can produce customized toxin derivatives in large quantities, and with mutations specifically targeted to the creation of vaccines and toxin antidotes. By focusing on solving the problems associated with producing recombinant toxins, which are physiologically active, the inactivated toxin derivatives of the present invention have distinct advantages over currently available alternatives. This is particularly true with respect to their immunogenic activity and their ability to compete with native toxin for cellular binding sites.

The methodology described herein has additional scientific and practical value because it provides a broad platform enabling facile manipulation and expression of Clostridial toxin genes. This will facilitate studies of the mechanism of Clostridial toxin action, their intracellular trafficking, and the factors responsible for their ability to transit through specific cell types without activation or toxic consequences. In addition, the BoNT constructs created can provide new tools for delivering specific reagents or drugs via oral or inhalation routes, or specifically into peripheral neurons, and enable their controlled activation at the site of intended action. Other approaches to engineer delivery tools based on chemically modified heavy chains from Clostridial neurotoxins have had limited success, possibly because the methods used to inactivate the toxin interfere with protein spatial structure (Goodnough et al., "Development of a Delivery Vehicle for Intracellular Transport of botulinum Neurotoxin Antagonists," FEBS Lett. 513:163-168 (2002), which is hereby incorporated by reference in its entirety).

DETAILED DESCRIPTION OF THE INVENTION

One aspect of the present invention relates to an isolated Clostridial neurotoxin propeptide. The propeptide has a light chain region, a heavy chain region, where the light and heavy chain regions are linked by a disulfide bond, and an intermediate region connecting the light and heavy chain regions. The intermediate region has a highly specific protease cleavage site which has three or more specific adjacent amino acid residues that are recognized by the highly specific protease in order to enable cleavage.

In a preferred embodiment, the isolated Clostridial neurotoxin propeptide is from Clostridium botulinum. Clostridium botulinum has multiple serotypes (A-G). Although the Clostridial neurotoxin propeptides of the present invention may be from any of the Clostridium botulinum serotypes, preferable serotypes are serotype A, serotype B, and serotype E.

Common structural features of the wild-type Clostridium botulinum neurotoxin propeptides are shown in FIG. 1 (see Original Patent). These structural features are illustrated using BoNT A propeptide as an example, and are generalized among all Clostridium botulinum serotypes. BoNT A propeptide has two chains, a light chain ("LC") of Mr .about.50,000 and a heavy chain ("HC") of Mr .about.100,000, linked by a disulfide bond between Cys.sub.429 and Cys.sub.453. As illustrated in FIG. 1, all seven BoNT serotype propeptides have a light chain region and a heavy chain region linked by a disulfide bond. Two essential Cys residues, one adjacent to the C-terminus of the light chain, and a second adjacent to the N-terminus of the heavy chain are present in all seven BoNT serotypes. These two Cys residues form the single disulfide bond holding the HC and LC polypeptides together in the mature neurotoxin. This disulfide bond enables the mature neurotoxin to accomplish its native physiological activities by permitting the HC and LC to carry out their respective biological roles in concert. The disulfide bond between HC and LC polypeptides in all seven serotypes is illustrated in FIG. 1 by the solid line joining the involved Cys residues. The outlined box in FIG. 1 illustrates the intermediate region defined by amino acid residues Lys.sub.438-Lys.sub.448 of BoNT A. This intermediate region identifies the amino acids eliminated during maturation of wild-type BoNT A, and believed to be excised by a protease endogenous to the host microorganism. This cleavage event, described infra, generates the biologically active BoNT HC-LC dimer. The outlined amino acid residues in FIG. 1, representing amino acid residues numbered approximately in the 420 to 450 range for all seven BoNT serotypes, can be considered as a region "non-essential"to the toxins' physiological activity and, therefore, represents targets for directed mutagenesis in all seven BoNT serotypes.

All seven BoNT serotypes contain Lys or Arg residues in the intermediate region defined by the box in FIG. 1 which make the propeptides susceptible to activation by trypsin. Native BoNT A propeptide recovered from young bacterial cultures can be activated by trypsinolysis, with production of intact, S--S bound light and heavy chain. Though multiple additional trypsin-susceptible sites are present in the propeptides, they are resistant to proteolysis due to their spatial positions within the native toxin molecule (Dekleva et al., "Nicking of Single Chain Clostridium botulinum Type A Neurotoxin by an Endogenous Protease," Biochem. Biophys. Res. Commun. 162:767-772 (1989); Lacy et al., "Crystal Structure of Botulinum Neurotoxin Type A and Implications for Toxicity," Nat. Struct. Biol. 5:898-902 (1998), which are hereby incorporated by reference in their entirety). A second site in the native propeptide of several BoNT serotypes can be susceptible to trypsin cleavage when subjected to higher enzyme concentrations or incubation times (Chaddock et al., "Expression and Purification of Catalytically Active, Non-Toxic Endopeptidase Derivatives of Clostridium botulinum Toxin Type A," Protein Expr. Purif. 25:219-228 (2002), which is hereby incorporated by reference in its entirety). This trypsin-susceptible site is located in the region adjacent to the toxin receptor binding domain. This region of the HC peptide is found to be exposed to solvent in BoNT serotypes for which information is available on their 3-D crystal structure (Lacy et al., "Crystal Structure of Botulinum Neurotoxin Type A and Implications for Toxicity," Nat. Struct. Biol. 5:898-902 (1998); Swaminathan et al., "Structural Analysis of the Catalytic and Binding Sites of Clostridium botulinum Neurotoxin B," Nat. Struct. Biol. 7:693-699 (2000), which are hereby incorporated by reference in their entirety).

In a preferred embodiment, the propeptide of the present invention has an intermediate region connecting the light and heavy chain regions which has a highly specific protease cleavage site and no low-specificity protease cleavage sites. For purposes of the present invention, a highly specific protease cleavage site has three or more specific adjacent amino acid residues that are recognized by the highly specific protease in order to permit cleavage (e.g., an enterokinase cleavage site). In contrast, a low-specificity protease cleavage site has two or less adjacent amino acid residues that are recognized by a protease in order to enable cleavage (e.g., a trypsin cleavage site).

In all seven BoNT serotypes, the amino acid preceding the N-terminus of the heavy chain is a Lys or Arg residue which is susceptible to proteolysis with trypsin. This trypsin-susceptible site can be replaced with a five amino acid enterokinase cleavage site (i.e., DDDDK (SEQ ID NO: 24)) upstream of the heavy chain's N-terminus, as illustrated for the seven serotypes in FIG. 2 (see Original Patent). This modification enables standardization activation with enterokinase. In serotypes A and C, additional Lys residues within this region are mutated to either Gln or His, thereby eliminating additional trypsin-susceptible sites which might result in undesirable non-specific activation of the toxin. Trypsin-susceptible recognition sequences also occur upstream of the heavy chain's receptor-binding domain in serotypes A, E, and F. This region's susceptibility to proteolysis is consistent with its exposure to solvent in the toxin's 3-D structure, as shown by X-ray crystallography analysis. Therefore, in serotypes A, E, and F, the susceptible residues are modified to Asn (FIG. 2). Signal peptides and N-terminal affinity tags are also preferably introduced, as required, to enable secretion and recovery.

In a preferred embodiment, the isolated Clostridial neurotoxin propeptide of the present invention has light and heavy chain regions which are not truncated.

As described in greater detail infra, the isolated Clostridial neurotoxin propeptide of the present invention may include a disabling mutation in an active metalloprotease site of the propeptide. The amino acid residues constituting the minimal catalytic domain of the light chain of the propeptide are illustrated in FIG. 1 and FIG. 2 by hatching. Specific amino acid residues constituting the active site of the catalytic domain of the metalloprotease are marked by stars in FIG. 1 and FIG. 2.

The Clostridial neurotoxin propeptide of the present invention may also possess a non-native motif in the light chain region that is capable of inactivating light chain metalloprotease activity in a toxic Clostridial neurotoxin. Suitable non-native motifs capable of inactivating light chain metalloprotease activity of a toxic Clostridial neurotoxin include, without limitation, SNARE motifs, metalloprotease inhibitor motifs, such as those present in the protein family known as Tissue Inhibitors of Metalloprotease (TIMP) (Mannello et al., "Matrix Metalloproteinase Inhibitors as Anticancer Therapeutics," Curr. Cancer Drug Targets 5:285-298 (2005); Emonard et al., "Regulation of Matrix Metalloproteinase (MMP) Activity by the Low-Density Lipoprotein Receptor-Related Protein (LRP). A New Function for an `Old Friend,`" Biochimie 87:369-376 (2005); Maskos, "Crystal Structures of MMPs in Complex with Physiological and Pharmacological Inhibitors," Biochimie 87:249-263 (2005), which are hereby incorporated by reference in their entirety), zinc chelating motifs based on suitably positioned sulfhydryl (preferably methionine) and acidic amino acids which become exposed upon binding of the chimeric antagonist to the active LC metalloprotease, and peptide motifs corresponding to the cleavage site on the substrate of LC metalloproteases, including transition state analogs of said cleavage site (Sukonpan et al., "Synthesis of Substrates and Inhibitors of Botulinum Neurotoxin Type A Metalloprotease," J. Peptide Res. 63:181-193 (2004); Hayden et al., "Discovery and Design of Novel Inhibitors of Botulinus Neurotoxin A: Targeted `Hinge` Peptide Libraries," Journal of Applied Toxicology 23:1-7 (2003); Oost et al., "Design and Synthesis of Substrate-Based Inhibitors of Botulinum Neurotoxin Type B Metalloprotease," Biopolymers (Peptide Science) 71:602-619 (2003), which are hereby incorporated by reference in its entirety).

SNARE motif peptides have been shown to prevent cleavage of synaptic complex components in Aplysia neurons (Rosetto et al., "SNARE Motif and Neurotoxins," Nature 372:415-416 (1994), which is hereby incorporated by reference in its entirety). SNARE motif peptides are common to the substrate binding site of known BoNT serotypes, and have been shown to inhibit the toxic LC when injected into BoNT-affected neurons (Rosetto et al., "SNARE Motif and Neurotoxins," Nature 372:415-416 (1994), which is hereby incorporated by reference in its entirety).

In a preferred embodiment, the Clostridial neurotoxin propeptide light chain region has one or more non-native motifs (e.g., SNARE motif peptides), which replace surface alpha-helix domains of the native propeptide. Seven surface alpha-helix domains in the light chain region of Clostridium botulinum serotypes are identified in FIG. 11 (see Original Patent).

A variety of Clostridial neurotoxin propeptides with light chain regions containing non-native motifs (e.g., SNARE motif peptides) in place of surface alpha-helix domains can be created. As described in greater detail below, these non-native motif bearing propeptides are generated by altering the nucleotide sequences of nucleic acids encoding the Clostridial neurotoxin propeptides.

Another aspect of the present invention relates to an isolated nucleic acid molecule encoding an isolated Clostridial neurotoxin propeptide of the present invention.

Nucleic acid molecules encoding full-length toxic Clostridial neurotoxins are well known in the art (See e.g., GenBank Accession Nos. M81186 (BoNT B); D90210 (BoNT C); S49407 (BoNT D); D90210 (BoNT E); X81714 (BoNT F); and X74162 (BoNT G)).

Nucleic acid molecules of the present invention preferably encode the amino acid sequences of FIG. 2. In particular, the nucleic acid molecules of the present invention are modified from the wild type BoNT serotype sequences to have one or more characteristics selected from the group consisting of a mutation which renders the encoded propeptide resistant to low-specificity proteolysis, one or more silent mutations that inactivate putative internal DNA regulatory elements, and one or more unique restriction sites. In particular, and as illustrated for each BoNT serotype in FIG. 2, mature neurotoxin stability and yield are optimized by site-directed mutation of residues within the intermediate region of the propeptide, thereby reducing the propeptides' susceptibility to non-specific proteolysis and poisoning of the host organism used for expression by the mature neurotoxin. Also, silent mutations are introduced into DNA regulatory elements that can affect RNA transcription or expression of the Clostridial neurotoxin propeptide in the system of choice. In addition, unique endonuclease restriction sites are introduced to enable creation of chimeric proteins.

A nucleic acid molecule of the present invention may also have a disabling mutation in a region encoding an active metalloprotease site of the propeptide, as described supra.

A nucleic acid molecule of the present invention may also have a mutation in a region encoding the light chain region, such that the nucleic acid molecule encodes, in the light chain region, a non-native motif capable of inactivating light chain metalloprotease activity in a toxic clostridial neurotoxin. Suitable non-native motifs are described supra.

A further aspect of the present invention relates to an expression system having a nucleic acid molecule encoding an isolated Clostridial neurotoxin propeptide of the present invention in a heterologous vector.

Yet another aspect of the present invention relates to a host cell having a heterologous nucleic acid molecule encoding an isolated Clostridial neurotoxin propeptide of the present invention.

Still another aspect of the present invention relates to a method of expressing a recombinant physiologically active Clostridial neurotoxin of the present invention. This method involves providing a nucleic acid construct having a nucleic acid molecule encoding an isolated Clostridial neurotoxin propeptide of the present invention. The nucleic acid construct has a heterologous promoter operably linked to the nucleic acid molecule and a 3' regulatory region operably linked to the nucleic acid molecule. The nucleic acid construct is then introduced into a host cell under conditions effective to express the physiologically active Clostridial neurotoxin.

In a preferred embodiment, the expressed neurotoxin is contacted with a highly specific protease under conditions effective to effect cleavage at the intermediate region. Preferably, the intermediate region of the Clostridial neurotoxin propeptide is not cleaved by proteases endogenous to the expression system or the host cell.

Expression of a Clostridial neurotoxin of the present invention can be carried out by introducing a nucleic acid molecule encoding a Clostridial neurotoxin propeptide into an expression system of choice using conventional recombinant technology. Generally, this involves inserting the nucleic acid molecule into an expression system to which the molecule is heterologous (i.e., not normally present). The introduction of a particular foreign or native gene into a mammalian host is facilitated by first introducing the gene sequence into a suitable nucleic acid vector. "Vector" is used herein to mean any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, virus, virion, etc., which is capable of replication when associated with the proper control elements and which is capable of transferring gene sequences between cells. Thus, the term includes cloning and expression vectors, as well as viral vectors. The heterologous nucleic acid molecule is inserted into the expression system or vector in proper sense (5'.fwdarw.3') orientation and correct reading frame. The vector contains the necessary elements for the transcription and translation of the inserted Clostridial neurotoxin propeptide-coding sequences.

U.S. Pat. No. 4,237,224 to Cohen and Boyer, which is hereby incorporated by reference in its entirety, describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids are then introduced by means of transformation and replicated in unicellular cultures including prokaryotic organisms and eukaryotic cells grown in tissue culture.

Recombinant genes may also be introduced into viruses, including vaccinia virus, adenovirus, and retroviruses, including lentivirus. Recombinant viruses can be generated by transfection of plasmids into cells infected with virus.

Suitable vectors include, but are not limited to, the following viral vectors such as lambda vector system gt11, gt WES.tB, Charon 4, and plasmid vectors such as pBR322, pBR325, pACYC177, pACYC184, pUC8, pUC9, pUC18, pUC19, pLG339, pR290, pKC37, pKC101, SV 40, pBluescript II SK+/- or KS+/- (see "Stratagene Cloning Systems" Catalog (1993) from Stratagene, La Jolla, Calif., which is hereby incorporated by reference in its entirety), pQE, pIH821, pGEX, pFastBac series (Invitrogen), pET series (see F. W. Studier et. al., "Use of T7 RNA Polymerase to Direct Expression of Cloned Genes," Gene Expression Technology Vol. 185 (1990), which is hereby incorporated by reference in its entirety), and any derivatives thereof. Recombinant molecules can be introduced into cells via transformation, particularly transduction, conjugation, mobilization, or electroporation. The DNA sequences are cloned into the vector using standard cloning procedures in the art, as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Laboratory, Cold Springs Harbor, N.Y. (1989), which is hereby incorporated by reference in its entirety.

A variety of host-vector systems may be utilized to express the Clostridial neurotoxin propeptide-encoding sequence in a cell. Primarily, the vector system must be compatible with the host cell used. Host-vector systems include but are not limited to the following: bacteria transformed with bacteriophage DNA, plasmid DNA, or cosmid DNA; microorganisms such as yeast containing yeast vectors; mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); and plant cells infected by bacteria. The expression elements of these vectors vary in their strength and specificities. Depending upon the host-vector system utilized, any one of a number of suitable transcription and translation elements can be used.

Different genetic signals and processing events control many levels of gene expression (e.g., DNA transcription and messenger RNA ("mRNA") translation).

Transcription of DNA is dependent upon the presence of a promoter which is a DNA sequence that directs the binding of RNA polymerase and thereby promotes mRNA synthesis. The DNA sequences of eukaryotic promoters differ from those of prokaryotic promoters. Furthermore, eukaryotic promoters and accompanying genetic signals may not be recognized in or may not function in a prokaryotic system, and, further, prokaryotic promoters are not recognized and do not function in eukaryotic cells.

Similarly, translation of mRNA in prokaryotes depends upon the presence of the proper prokaryotic signals which differ from those of eukaryotes. Efficient translation of mRNA in prokaryotes requires a ribosome binding site called the Shine-Dalgarno ("SD") sequence on the mRNA. This sequence is a short nucleotide sequence of mRNA that is located before the start codon, usually AUG, which encodes the amino-terminal methionine of the protein. The SD sequences are complementary to the 3'-end of the 16S rRNA (ribosomal RNA) and probably promote binding of mRNA to ribosomes by duplexing with the rRNA to allow correct positioning of the ribosome. For a review on maximizing gene expression see Roberts and Lauer, Methods in Enzymology, 68:473 (1979), which is hereby incorporated by reference in its entirety.

Promoters vary in their "strength" (i.e., their ability to promote transcription). For the purposes of expressing a cloned gene, it is desirable to use strong promoters in order to obtain a high level of transcription and, hence, expression of the gene. Depending upon the host cell system utilized, any one of a number of suitable promoters may be used. For instance, when cloning in E. coli, its bacteriophages, or plasmids, promoters such as the PH promoter, T7 phage promoter, lac promoter, trp promoter, recA promoter, ribosomal RNA promoter, the P.sub.R and P.sub.L promoters of coliphage lambda and others, including but not limited, to lacUV5, ompF, bla, lpp, and the like, may be used to direct high levels of transcription of adjacent DNA segments. Additionally, a hybrid trp-lacUV5 (tac) promoter or other E. coli promoters produced by recombinant DNA or other synthetic DNA techniques may be used to provide for transcription of the inserted gene.

Bacterial host cell strains and expression vectors may be chosen which inhibit the action of the promoter unless specifically induced. In certain operons, the addition of specific inducers is necessary for efficient transcription of the inserted DNA. For example, the lac operon is induced by the addition of lactose or IPTG (isopropylthio-beta-D-galactoside). A variety of other operons, such as trp, pro, etc., are under different controls.

Specific initiation signals are also required for efficient gene transcription and translation in prokaryotic cells. These transcription and translation initiation signals may vary in "strength" as measured by the quantity of gene specific messenger RNA and protein synthesized, respectively. The DNA expression vector, which contains a promoter, may also contain any combination of various "strong" transcription and/or translation initiation signals. For instance, efficient translation in E. coli requires a Shine-Dalgarno ("SD") sequence about 7-9 bases 5' to the initiation codon (ATG) to provide a ribosome binding site. Thus, any SD-ATG combination that can be utilized by host cell ribosomes may be employed. Such combinations include but are not limited to the SD-ATG combination from the cro gene or the N gene of coliphage lambda, or from the E. coli tryptophan E, D, C, B or A genes. Additionally, any SD-ATG combination produced by recombinant DNA or other techniques involving incorporation of synthetic nucleotides may be used.

Depending on the vector system and host utilized, any number of suitable transcription and/or translation elements, including constitutive, inducible, and repressible promoters, as well as minimal 5' promoter elements may be used.

The Clostridial neurotoxin-encoding nucleic acid, a promoter molecule of choice, a suitable 3' regulatory region, and if desired, a reporter gene, are incorporated into a vector-expression system of choice to prepare a nucleic acid construct using standard cloning procedures known in the art, such as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Cold Spring Harbor Laboratory Press, New York (2001), which is hereby incorporated by reference in its entirety.

The nucleic acid molecule encoding a Clostridial neurotoxin is inserted into a vector in the sense (i.e., 5'.fwdarw.3') direction, such that the open reading frame is properly oriented for the expression of the encoded Clostridial neurotoxin propeptide under the control of a promoter of choice. Single or multiple nucleic acids may be ligated into an appropriate vector in this way, under the control of a suitable promoter, to prepare a nucleic acid construct.

Once the isolated nucleic acid molecule encoding the Clostridial neurotoxin propeptide has been inserted into an expression vector, it is ready to be incorporated into a host cell. Recombinant molecules can be introduced into cells via transformation, particularly transduction, conjugation, lipofection, protoplast fusion, mobilization, particle bombardment, or electroporation. The DNA sequences are incorporated into the host cell using standard cloning procedures known in the art, as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Springs Laboratory, Cold Springs Harbor, N.Y. (1989), which is hereby incorporated by reference in its entirety. Suitable hosts include, but are not limited to, bacteria, virus, yeast, fungi, mammalian cells, insect cells, plant cells, and the like. Preferable host cells of the present invention include, but are not limited to, Escherichia coli, insect cells, and Pichia pastoris cells.

Typically, an antibiotic or other compound useful for selective growth of the transformed cells only is added as a supplement to the media. The compound to be used will be dictated by the selectable marker element present in the plasmid with which the host cell was transformed. Suitable genes are those which confer resistance to gentamycin, G418, hygromycin, puromycin, streptomycin, spectinomycin, tetracycline, chloramphenicol, and the like. Similarly, "reporter genes" which encode enzymes providing for production of an identifiable compound, or other markers which indicate relevant information regarding the outcome of gene delivery, are suitable. For example, various luminescent or phosphorescent reporter genes are also appropriate, such that the presence of the heterologous gene may be ascertained visually.

In a preferred embodiment of the present invention, the expressed neurotoxin propeptide is contacted with a highly specific protease (e.g., enterokinase) under conditions effective to enable cleavage at the intermediate region of the propeptide of the present invention. Preferably, the expressed neurotoxin propeptide has one or more disulfide bridges.

Another aspect of the present invention relates to an isolated, physiologically active Clostridial neurotoxin produced by cleaving an isolated Clostridial neurotoxin propeptide of the present invention. The propeptide is cleaved at the highly specific protease cleavage site. The light and heavy chain regions are linked by a disulfide bond.

As discussed supra, Clostridial neurotoxins are synthesized as single chain propeptides which are later activated by a specific proteolysis cleavage event, generating a dimer joined by a disulfide bond. These structural features can be illustrated using BoNT A as an example, and are generally applicable to all Clostridium botulinum serotypes. The mature BoNT A is composed of three functional domains of Mr .about.50,000 (FIG. 3A (see Original Patent)), where the catalytic function responsible for toxicity is confined to the light chain (residues 1-437), the translocation activity is associated with the N-terminal half of the heavy chain (residues 448-872), and cell binding is associated with its C-terminal half (residues 873-1,295) (Johnson, "Clostridial Toxins as Therapeutic Agents: Benefits of Nature's Most Toxic Proteins," Annu. Rev. Microbiol. 53:551-575 (1999); Montecucco et al., "Structure and Function of Tetanus and Botulinum Neurotoxins," Q. Rev. Biophys. 28:423-472 (1995), which are hereby incorporated by reference in their entirety).

Optimized expression and recovery of recombinant neurotoxins for BoNT serotypes in a native and physiologically active state is achieved by the introduction of one or more alterations to the nucleotide sequences encoding the BoNT propeptides, as discussed supra. These mutations are designed to maximize yield of recombinant Clostridial neurotoxin, while retaining the native toxins structure and biological activity.

Isolated, full-length Clostridial neurotoxins of the present invention are physiologically active. This physiological activity includes, but is not limited to, toxin immunogenicity, trans- and intra-cellular trafficking, and cell recognition.

The mechanism of cellular binding and internalization of Clostridial toxins is still poorly understood. No specific receptor has been unambiguously identified, and the binding constants have not been characterized. The C-terminal portion of the heavy chain of all Clostridial neurotoxins binds to gangliosides (sialic acid-containing glycolipids), with a preference for gangliosides of the G.sub.1b series (Montecucco et al., "Structure and Function of Tetanus and Botulinum Neurotoxins," Q. Rev. Biophys. 28:423-472 (1995); Montecucco, "How Do Tetanus and Botulinum Toxins Bind to Neuronal Membranes?" TIBS 11:314-317 (1986); and Van Heyningen et al., "The Fixation of Tetanus Toxin by Ganglioside," J. Gen. Microbiol. 24:107-119 (1961), which are hereby incorporated by reference in their entirety). The sequence responsible for ganglioside binding has been identified for the structurally similar TeNT molecule, and is located within the 34 C-terminal amino acid residues of its heavy chain. BoNT A, B, C, E, and F share a high degree of homology with TeNT in this region (FIG. 1) (Shapiro et al., "Identification of a Ganglioside Recognition Domain of Tetanus Toxin Using a Novel Ganglioside Photoaffinity Ligand," J. Biol. Chem. 272:30380-30386 (1997), which is hereby incorporated by reference in its entirety). Multiple types of evidence suggest the existence of at least one additional component involved in the binding of Clostridial neurotoxins to neuronal membranes (Montecucco et al., "Structure and Function of Tetanus and Botulinum Neurotoxins," Q. Rev. Biophys. 28:423-472 (1995); Montecucco, "How Do Tetanus and Botulinum Toxins Bind to Neuronal Membranes?" TIBS 11:314-317 (1986), which are hereby incorporated by reference in their entirety). In two reports (Nishiki et al., "The High-Affinity Binding of Clostridium Botulinum Type B Neurotoxin to Synaptotagmin II Associated with Gangliosides G.sub.T1b/G.sub.D1a," FEBS Lett. 378:253-257 (1996); Dong et al., "Synaptotagmins I and II Mediate Entry of Botulinum Neurotoxin B into Cells," J. Cell Biol. 162:1293-1303 (2003), which are hereby incorporated by reference in their entirety), synaptotagmins were identified as possible candidates for the auxiliary BoNT B receptor, and synaptotagmins I and II were implicated as neuronal receptors for BoNT G (Rummel et al., "Synaptotagmins I and II Act as Nerve Cell Receptors for Botulinum Neurotoxin G," J. Biol. Chem. 279:30865-30870 (2004), which is hereby incorporated by reference in its entirety). However despite the structural similarity in the putative receptor-binding domain of Clostridial neurotoxins, other toxin subtypes show no affinity for synaptotagmins or synaptotagmin-related molecules. Lipid rafts (Herreros et al., "Lipid Rafts Act as Specialized Domains for Tetanus Toxin Binding and Internalization into Neurons," Mol. Biol. Cell 12:2947-2960 (2001), which is hereby incorporated by reference in its entirety) have been implicated as a specialized domain involved in TeNT binding and internalization into neurons, but these domains are widely distributed on multiple cell types, and therefore cannot simply explain the high specificity of the toxins for neurons.

Clostridial neurotoxins are internalized through the presynaptic membrane by an energy-dependent mechanism (Montecucco et al., "Structure and Function of Tetanus and Botulinum Neurotoxins," Q. Rev. Biophys. 28:423-472 (1995); Matteoli et al., "Synaptic Vesicle Endocytosis Mediates the Entry of Tetanus Neurotoxin into Hippocampal Neurons," Proc. Natl. Acad. Sci. USA 93:13310-13315 (1996); and Mukherjee et al., "Endocytosis," Physiol. Rev. 77:759-803 (1997), which are hereby incorporated by reference in their entirety), and rapidly appear in vesicles where they are at least partially protected from degradation (Dolly et al., "Acceptors for Botulinum Neurotoxin Reside on Motor Nerve Terminals and Mediate Its Internalization," Nature 307:457-460 (1984); Critchley et al., "Fate of Tetanus Toxin Bound to the Surface of Primary Neurons in Culture: Evidence for Rapid Internalization," J. Cell Biol. 100:1499-1507 (1985), which are hereby incorporated by reference in their entirety). The BoNT complex of light and heavy chains interacts with the endocytic vesicle membrane in a chaperone-like way, preventing aggregation and facilitating translocation of the light chain in a fashion similar to the protein conducting/translocating channels of smooth ER, mitochondria, and chloroplasts (Koriazova et al., "Translocation of Botulinum Neurotoxin Light Chain Protease through the Heavy Chain Channel," Nat. Struct. Biol. 10:13-18 (2003), which is hereby incorporated by reference in its entirety). Acidification of the endosome is believed to induce pore formation, which allows translocation of the light chain to the cytosol upon reduction of the interchain disulfide bond (Hoch et al., "Channels Formed by Botulinum, Tetanus, and Diphtheria Toxins in Planar Lipid Bilayers: Relevance to Translocation of Proteins Across Membranes," Proc. Natl. Acad. Sci. USA 82:1692-1696 (1985), which is hereby incorporated by reference in its entirety). Within the cytosol, the light chain displays a zinc-endopeptidase activity specific for protein components of the synaptic vesicle exocytosis apparatus. TeNT and BoNT B, D, F, and G recognize VAMP/synaptobrevin. This integral protein of the synaptic vesicle membrane is cleaved at a single peptide bond, which differs for each neurotoxin. BoNT A, C, and E recognize and cleave SNAP-25, a protein of the presynaptic membrane, at two different sites within the carboxyl terminus. BoNT C also cleaves syntaxin, another protein of the nerve plasmalemma (Montecucco et al., "Structure and Function of Tetanus and Botulinum Neurotoxins," Q. Rev. Biophys. 28:423-472 (1995); Sutton et al., "Crystal Structure of a SNARE Complex Involved in Synaptic Exocytosis at 2.4 {acute over (.ANG.)} Resolution," Nature 395:347-353 (1998), which are hereby incorporated by reference in their entirety). The cleavage of any component of the synaptic release machinery results in inhibition of acetylcholine release, ultimately leading to neuromuscular paralysis.

In one embodiment of the present invention, the isolated Clostridial neurotoxin is toxic. The toxicity of Clostridial neurotoxins is a result of a multi-step mechanism. From the circulation, BoNT targets the pre-synaptic membrane of neuromuscular junctions, where it is internalized to directly exert its toxic effect on the peripheral nervous system (Dolly et al., "Acceptors for Botulinum Neurotoxin Reside on Motor Nerve Terminals and Mediate Its Internalization," Nature 307:457-460 (1984), which is hereby incorporated by reference in its entirety). Toxicity at the neuromuscular junction involves neuron binding; internalization into endocytic vesicles, similar to those involved in synaptic vesicle recycling; activation within an acidic compartment to the proteolytically active toxin which then penetrates into the neuronal cytoplasm; and target recognition and catalytic cleavage of substrates in the neuronal machinery for synaptic vesicle exocytosis.

In an alternative embodiment of the present invention, the isolated Clostridial neurotoxin is physiologically active and atoxic. The endopeptidase activity responsible for Clostridial neurotoxin toxicity is believed to be associated with the presence of a HExxHxxH (SEQ ID NO: 25) motif in the light chain, characteristic of metalloproteases (FIG. 1). Mutagenesis of BoNT A light chain, followed by microinjection of the corresponding mRNA into presynaptic cholinergic neurons of Aplysia californica, allowed the minimal essential domain responsible for toxicity to be identified (Kurazono et al., "Minimal Essential Domains Specifying Toxicity of the Light Chains of Tetanus Toxin and Botulinum Neurotoxin Type A," J. Biol. Chem. 267:14721-14729 (1992), which is hereby incorporated by reference in its entirety). Site-directed mutagenesis of BoNT A light chain pinpointed the amino acid residues involved in Zn.sup.2+ coordination, and formation of the active metalloendoprotease core which cleaves SNAP-25 (Rigoni et al., "Site-Directed Mutagenesis Identifies Active-Site Residues of the Light Chain of Botulinum Neurotoxin Type A," Biochem. Biophys. Res. Commun. 288:1231-1237 (2001), which is hereby incorporated by reference in its entirety). The three-dimensional structures of Clostridial neurotoxins and their derivatives confirmed the mutagenesis results, and detailed the spatial organization of the protein domains. For the BoNT A holotoxin, crystal structure was obtained to a resolution of 3.3 {acute over (.ANG.)} (Lacy et al., "Crystal Structure of Botulinum Neurotoxin Type A and Implications for Toxicity," Nat. Struct. Biol. 5:898-902 (1998), which is hereby incorporated by reference in its entirety). The BoNT B holotoxin crystal structure was determined at 1.8 and 2.6 {acute over (.ANG.)} resolution (Swaminathan et al., "Structural Analysis of the Catalytic and Binding Sites of Clostridium Botulinum Neurotoxin B," Nat. Struct. Biol. 7:693-699 (2000), which is hereby incorporated by reference in its entirety). Recently, a crystal structure for BoNT E catalytic domain was determined to 2.1 {acute over (.ANG.)} resolution (Agarwal et al., "Structural Analysis of Botulinum Neurotoxin Type E Catalytic Domain and Its Mutant Glu212>Gln Reveals the Pivotal Role of the Glu212 Carboxylate in the Catalytic Pathway," Biochemistry 43:6637-6644 (2004), which is hereby incorporated by reference in its entirety). The later study provided multiple interesting structural details, and helps explain the complete loss of metalloendoproteolytic activity in the BoNT E LC E212>Q mutant. The availability of this detailed information on the relationship between the amino acid sequence and biological activities of Clostridial toxins enables the design of modified toxin genes with properties specifically altered for therapeutic goals.

Thus, in a preferred embodiment, the physiologically active and atoxic Clostridial neurotoxin of the present invention has a disabling mutation in an active metalloprotease site.

The physiologically active and atoxic Clostridial neurotoxin of the present invention may also have a non-native motif (e.g., a SNARE motif) in the light chain region that is capable of inactivating light chain metalloprotease activity in a toxic Clostridial neurotoxin. FIG. 11 (see Original Patent) illustrates the sequences of nine chimeric proteins, which are physiologically active and atoxic Clostridial neurotoxins containing at least one non-native motif in the light chain region that is capable of inactivating light chain metalloprotease activity in a toxic Clostridial neurotoxin. The non-native motifs are substituted for alpha-helix domains. When present in the physiologically active and atoxic Clostridial neurotoxin, the non-native protein motifs enable the neurotoxin to bind, inactivate, or otherwise mark the toxic light chain region of a wild type Clostridial neurotoxin for elimination from the cytosol of neurotoxin-affected neurons. As such, a physiologically active and atoxic Clostridial neurotoxin having a non-native motif in the light chain region that is capable of inactiving light chain metalloprotease activity in a toxic Clostridial neurotoxin is useful as an antidote to effectively target the cytoplasm of neurotoxin-affected neurons. Administration of such antidotes is described in greater detail below.

Yet a further aspect of the present invention relates to a vaccine or antidote having an isolated, physiologically active, atoxic, Clostridial neurotoxin produced by cleaving an isolated Clostridial neurotoxin propeptide of the present invention. The propeptide is cleaved at the highly specific protease cleavage site. The light and heavy chain regions are linked by a disulfide bond.

Developing effective vaccines and antidotes against Clostridial neurotoxins requires the preservation of structural features important to toxin trafficking and immunogenicity. From a practical perspective, this is most easily achieved by first producing recombinant molecules that retain the structural features and toxicity of native toxin, followed by selective modification to eliminate toxicity and introduce therapeutic utility. To achieve this goal, a versatile platform for the genetic manipulation of Clostridial toxin genes and for their selective modification was developed (described infra). The genetic engineering scheme can produce full-length toxic and atoxic derivatives of BoNT A, which retains important aspects of the wild toxin's native structure. This methodology can be generalized across the entire family of Clostridial neurotoxins because of their structural similarities (See FIGS. 1-2).

Thus, in a preferred embodiment, the vaccine or antidote of the present invention is a physiologically active and atoxic Clostridial neurotoxin from Clostridium botulinum, such as from Clostridium botulinum serotypes A-G. As described supra, the vaccine or antidote has the physiological activity of a wild Clostridial neurotoxin, which activity includes, but is not limited to, toxin immunogenicity, trans- and intra-cellular trafficking, and cell recognition. The Clostridial neurotoxin of the vaccine or antidote is rendered atoxic by a mutation in its active metalloprotease site, as described supra. Additional mutations may be introduced to ensure atoxicity and introduce new biological activities, while preserving systemic trafficking and cellular targeting of the vaccine or antidote. As has also been described, the vaccine or antidote may possess non-native motifs in the light chain region that are capable of inactivating light chain metalloprotease activity in a toxic Clostridial neurotoxin.

Atoxic Clostridial neurotoxins can be tested as candidate vaccines and antidotes to BoNT poisoning. Atoxic derivatives are created using the BoNT toxic derivative constructs developed under the methods described infra. Point mutations are introduced into the toxin's active metalloprotease site to eliminate toxicity while maintaining native toxin structure, immunogenicity, trans- and intra-cellular trafficking, and cell recognition. Expression systems and purification schemes are optimized as described infra. Derivatives found to completely lack toxicity yet retain relevant biological activities of the native toxin, are evaluated for their potential as either vaccines or antidotes to BoNT poisoning. Parenteral routes of administration are tested first, followed by evaluation of oral and inhalational routes as applicable. Utility as a vaccine is determined by immunogenicity and challenge studies in mice. Utility as an antidote is first evaluated in vitro by testing the ability of atoxic derivatives to prevent neuromuscular blockade in the mouse phrenic-nerve hemidiaphragm, and to inhibit native toxin trafficking in the transcytosis assay. Effective in vitro antagonists are tested as in vivo antidotes, and may be superior to antibody-based antidotes because they more effectively mimic native toxin absorption and trafficking pathways. Antidote effectiveness in vivo is first evaluated using simultaneous dosing. Additional dosage and timing parameters relevant to using antidotes under crisis situations is further evaluated for atoxic derivatives found to be effective when administered simultaneously with toxin. Using these procedures, a series of atoxic derivatives and fusion proteins are created and their biological activities systematically catalogued. The availability of these well characterized BoNT gene constructs and toxin derivatives enables the rational design of new anti-BoNT therapeutics. Dose-response analyses and challenge studies against active neurotoxin provide data that allows the best candidate vaccines and antidotes to be selected for further development.

A further aspect of the present invention relates to method of immunizing a subject against toxic effects of a Clostridial neurotoxin. This method involves administering a vaccine of the present invention to the subject under conditions effective to immunize the subject against toxic effects of Clostridial neurotoxin.

The subject administered the vaccine may further be administered a booster of the vaccine under conditions effective to enhance immunization of the subject.

Another aspect of the present invention relates to a method of treating a subject for toxic effects of a Clostridial neurotoxin. This method involves administering an antidote comprising an isolated, physiologically active, atoxic, Clostridial neurotoxin produced by cleaving the isolated Clostridial neurotoxin propeptide of the present invention to the subject under conditions effective to treat the subject for toxic effects of Clostridial neurotoxin.

A vaccine or antidote of the present invention can be administered to a subject orally, parenterally, for example, subcutaneously, intravenously, intramuscularly, intraperitoneally, by intranasal instillation, or by application to mucous membranes, such as, that of the nose, throat, and bronchial tubes. The vaccine or antidote may be administered alone or with suitable pharmaceutical carriers, and can be in solid or liquid form such as, tablets, capsules, powders, solutions, suspensions, or emulsions.

The vaccine or antidote of the present invention may be orally administered, for example, with an inert diluent, or with an assimilable edible carrier, or may be enclosed in hard or soft shell capsules, or may be compressed into tablets, or may be incorporated directly with the food of the diet. For oral therapeutic administration, the vaccine or antidote may be incorporated with excipients and used in the form of tablets, capsules, elixirs, suspensions, syrups, and the like. Such compositions and preparations should contain at least 0.1% of active compound. The percentage of the compound in these compositions may, of course, be varied and may conveniently be between about 2% to about 60% of the weight of the unit. The amount of active compound in such therapeutically useful compositions is such that a suitable dosage will be obtained. Preferred compositions according to the present invention are prepared so that an oral dosage unit contains between about 1 and 250 mg of active compound.

The tablets, capsules, and the like may also contain a binder such as gum tragacanth, acacia, corn starch, or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid; a lubricant such as magnesium stearate; and a sweetening agent such as sucrose, lactose, or saccharin. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a fatty oil.

Various other materials may be present as coatings or to modify the physical form of the dosage unit. For instance, tablets may be coated with shellac, sugar, or both. A syrup may contain, in addition to active ingredient, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye, and flavoring such as cherry or orange flavor.

The vaccine or antidote may also be administered parenterally. Solutions or suspensions can be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose. Dispersions can also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof in oils. Illustrative oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, or mineral oil. In general, water, saline, aqueous dextrose and related sugar solution, and glycols such as, propylene glycol or polyethylene glycol, are preferred liquid carriers, particularly for injectable solutions. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions. In all cases, the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol), suitable mixtures thereof, and vegetable oils.

The vaccine or antidote of the present invention may also be administered directly to the airways in the form of an aerosol. For use as aerosols, the vaccine or antidote of the present invention in solution or suspension may be packaged in a pressurized aerosol container together with suitable propellants, for example, hydrocarbon propellants like propane, butane, or isobutane with conventional adjuvants. The vaccine or antidote of the present invention also may be administered in a non-pressurized form such as in a nebulizer or atomizer.

A further aspect of the present invention relates to a chimeric protein having a first protein or protein fragment having a heavy chain region of a Clostridial neurotoxin and a second protein or protein fragment linked to the first protein or protein fragment.

In a preferred embodiment, the second protein or protein fragment has therapeutic functionality which can target specific steps in a trafficking pathway of the Clostridial neurotoxin.

BoNTs pass across epithelial surfaces without being destroyed or causing local toxicity. Passage across epithelia is believed to occur by specific binding and transcytosis. The ability of intact BoNT A to pass though pulmonary epithelia and resist proteolytic inactivation was demonstrated in rat primary alveolar epithelial cells and in immortalized human pulmonary adenocarcinoma (Calu-3) cells. The rate of transport was greater in the apical-to-basolateral direction than in the basolateral-to-apical direction, and it was blocked by serotype-specific toxin antibodies (Park et al., "Inhalational Poisoning by Botulinum Toxin and Inhalation Vaccination with Its Heavy-Chain Component," Infect. Immun. 71:1147-1154 (2003), which is hereby incorporated by reference in its entirety).

The ability of Clostridial neurotoxins to pass undegraded through epithelial barriers via transcytosis and to specifically target nervous tissue makes Clostridial neurotoxins useful in the development of oral and inhalational carriers for therapeutic agents that cannot normally be delivered via these routes of administration, and as delivery vehicles which can specifically target the peripheral and central nervous system.

Still another aspect of the present invention relates to a treatment method. This method involves contacting a patient with an isolated, physiologically active, toxic, Clostridial neurotoxin produced by cleaving an isolated Clostridial neurotoxin propeptide according to the present invention, under conditions effective to treat the patient.

By treatment, it is meant aesthetic treatment (See e.g., Carruthers et al., "Botulinum Toxin A in the Mid and Lower Face and Neck," Dermatol. Clin. 22:151-158 (2004); Lang, "History and Uses of BOTOX (Botulinum Toxin Type A)," Lippincotts Case Manag. 9:109-112 (2004); Naumann et al., "Safety of Botulinum Toxin Type A: A Systematic Review and Meta-Analysis," Curr. Med. Res. Opin. 20:981-990 (2004); Vartanian et al., "Facial Rejuvenation Using Botulinum Toxin A: Review and Updates," Facial Plast. Surg. 20:11-19 (2004), which are hereby incorporated by reference in their entirety) as well as therapeutic treatment (See e.g., Bentsianov et al., "Noncosmetic Uses of Botulinum Toxin," Clin. Dermatol. 22:82-88 (2004); Carruthers et al., "Botox: Beyond Wrinkles," Clin. Dermatol. 22:89-93 (2004); Jankovic, "Botulinum Toxin In Clinical Practice," J. Neurol. Neurosurg. Psychiatry 75:951-957 (2004); Klein, "The Therapeutic Potential of Botulinum Toxin," Dermatol. Surg. 30:452-455 (2004); Schurch, "The Role of Botulinum Toxin in Neurology," Drugs Today (Banc) 40:205-212 (2004), which are hereby incorporated by reference in their entirety).

Preferred treatment methods of the present invention include, but are not limited to, dermatologic, gastroenterologic, genitourinaric, and neurologic treatment.

Dermatologic treatment includes, but is not limited to, treatment for Rhtyiddess (wrinkles) (Sadick et al., "Comparison of Botulinum Toxins A and B in the Treatment of Facial Rhytides," Dermatol. Clin. 22:221-226 (2004), which is hereby incorporated by reference in its entirety), including glabellar (Carruthers et al., "Botulinum Toxin type A for the Treatment of Glabellar Rhytides," Dermatol. Clin. 22:137-144 (2004); Ozsoy et al., "Two-Plane Injection of Botulinum Exotoxin A in Glabellar Frown Lines," Aesthetic Plast. Surg. 28:114-115 (2004); which are hereby incorporated by reference in their entirety), neck lines (Brandt et al., "Botulinum Toxin for the Treatment of Neck Lines and Neck Bands," Dermatol. Clin. 22:159-166 (2004), which is hereby incorporated by reference in its entirety), crows feet (Levy et al., "Botulinum Toxin A: A 9-Month Clinical and 3D In Vivo Profilometric Crow's Feet Wrinkle Formation Study," J. Cosmet. Laser Ther. 6:16-20 (2004), which is hereby incorporated by reference in its entirety), and brow contour (Chen et al., "Altering Brow Contour with Botulinum Toxin," Facial Plast. Surg. Clin. North Am. 11:457-464 (2003), which is hereby incorporated by reference in its entirety). Other dermatologic treatment includes treatment for hypertrophic masateer muscles in Asians (Ahn et al., "Botulinum Toxin for Masseter Reduction in Asian Patients," Arch. Facial Plast. Surg. 6:188-191 (2004), which is hereby incorporated by reference in its entirety) and focal hyperhydrosis (Glogau, "Treatment of Hyperhidrosis with Botulinum Toxin," Dermatol. Clin. 22:177-185, vii (2004), which is hereby incorporated by reference in its entirety), including axillary ("Botulinum Toxin (Botox) for Axillary Hyperhidrosis," Med. Lett. Drugs Ther. 46:76 (2004), which is hereby incorporated by reference in its entirety) and genital (Lee et al., "A Case of Foul Genital Odor Treated with Botulinum Toxin A," Dermatol. Surg. 30:1233-1235 (2004), which is hereby incorporated by reference in its entirety).

Gastroentologic treatment includes, but is not limited to, treatment for esophageal motility disorders (Achem, "Treatment of Spastic Esophageal Motility Disorders," Gastroenterol. Clin. North Am. 33:107-124 (2004), which is hereby incorporated by reference in its entirety), pharyngeal-esophageal spasm (Bayles et al., "Operative Prevention and Management of Voice-Limiting Pharyngoesophageal Spasm," Otolaryngol. Clin. North Am. 37:547-558 (2004); Chao et al., "Management of Pharyngoesophageal Spasm with Botox," Otolaryngol. Clin. North Am. 37:559-566 (2004), which are hereby incorporated by reference in their entirety), and anal fissure (Brisinda et al., "Botulinum Neurotoxin to Treat Chronic Anal Fissure: Results of a Randomized `Botox vs. Dysport` Controlled Trial," Ailment Pharmacol. Ther. 19:695-701 (2004); Jost et al., "Botulinum Toxin A in Anal Fissure: Why Does it Work?" Dis. Colon Rectum 47:257-258 (2004), which are hereby incorporated by reference in their entirety).

Genitourinaric treatment includes, but is not limited to, treatment for neurogenic dysfunction of the urinary tract ("Botulinic Toxin in Patients with Neurogenic Dysfunction of the Lower Urinary Tracts," Urologia July-August:44-48 (2004); Giannantoni et al., "Intravesical Resiniferatoxin Versus Botulinum-A Toxin Injections for Neurogenic Detrusor Overactivity: A Prospective Randomized Study," J. Urol. 172:240-243 (2004); Reitz et al., "Intravesical Therapy Options for Neurogenic Detrusor Overactivity," Spinal Cord 42:267-272 (2004), which are hereby incorporated by reference in their entirety), overactive bladder (Cruz, "Mechanisms Involved in New Therapies for Overactive Bladder," Urology 63:65-73 (2004), which is hereby incorporated by reference in its entirety), and neuromodulation of urinary urge incontinence (Abrams, "The Role of Neuromodulation in the Management of Urinary Urge Incontinence," BJU Int. 93:1116 (2004), which is hereby incorporated by reference in its entirety).

Neurologic treatment includes, but is not limited to, treatment for tourettes syndrome (Porta et al., "Treatment of Phonic Tics in Patients with Tourette's Syndrome Using Botulinum Toxin Type A," Neurol. Sci. 24:420-423 (2004), which is hereby incorporated by reference in its entirety) and focal muscle spasticity or dystonias (MacKinnon et al., "Corticospinal Excitability Accompanying Ballistic Wrist Movements in Primary Dystonia," Mov. Disord. 19:273-284 (2004), which is hereby incorporated by reference in its entirety), including, but not limited to, treatment for cervical dystonia (Haussermann et al., "Long-Term Follow-Up of Cervical Dystonia Patients Treated with Botulinum Toxin A," Mov. Disord. 19:303-308 (2004), which is hereby incorporated by reference in its entirety), primary blepharospasm (Defazio et al., "Primary Blepharospasm: Diagnosis and Management," Drugs 64:237-244 (2004), which is hereby incorporated by reference in its entirety), hemifacial spasm, post-stroke (Bakheit, "Optimising the Methods of Evaluation of the Effectiveness of Botulinum Toxin Treatment of Post-Stroke Muscle Spasticity," J. Neurol. Neurosurg. Psychiatry 75:665-666 (2004), which is hereby incorporated by reference in its entirety), spasmodic dysphonia (Bender et al., "Speech Intelligibility in Severe Adductor Spasmodic Dysphonia," J. Speech Lang. Hear Res. 47:21-32 (2004), which is hereby incorporated by reference in its entirety), facial nerve disorders (Finn, "Botulinum Toxin Type A: Fine-Tuning Treatment of Facial Nerve Injury," J. Drugs Dermatol. 3:133-137 (2004), which is hereby incorporated by reference in its entirety), and Rasmussen syndrome (Lozsadi et al., "Botulinum Toxin A Improves Involuntary Limb Movements in Rasmussen Syndrome," Neurology 62:1233-1234 (2004), which is hereby incorporated by reference in its entirety). Other neurologic treatments include treatment for amputation pain (Kern et al., "Effects of Botulinum Toxin Type B on Stump Pain and Involuntary Movements of the Stump," Am. J. Phys. Med. Rehabil. 83:396-399 (2004), which is hereby incorporated by reference in its entirety), voice tremor (Adler et al., "Botulinum Toxin Type A for Treating Voice Tremor," Arch. Neurol. 61:1416-1420 (2004), which is hereby incorporated by reference in its entirety), crocodile tear syndrome (Kyrmizakis et al., "The Use of Botulinum Toxin Type A in the Treatment of Frey and Crocodile Tears Syndrome," J. Oral Maxillofac. Surg. 62:840-844 (2004), which is hereby incorporated by reference in its entirety), marginal mandibular nerve paralysis, and pain control (Cui et al., "Subcutaneous Administration of Botulinum Toxin A Reduces Formalin-Induced Pain," Pain 107:125-133 (2004), which is hereby incorporated by reference in its entirety), including but not limited to pain after mastectomy (Layeeque et al., "Botulinum Toxin Infiltration for Pain Control After Mastectomy and Expander Reconstruction," Ann. Surg. 240:608-613 (2004), which is hereby incorporated by reference in its entirety) and chest pain of esophageal origin (Schumulson et al., "Current and Future Treatment of Chest Pain of Presumed Esophageal Origin," Gastroenterol. Clin. North Am. 33:93-105 (2004), which is hereby incorporated by reference in its entirety). Another neurologic treatment amenable to the methods of the present invention is headache (Blumenfeld et al., "Botulinum Neurotoxin for the Treatment of Migraine and Other Primary Headache Disorders," Dermatol. Clin. 22:167-175 (2004), which is hereby incorporated by reference in its entirety).

The methods of the present invention are also suitable for treatment of cerebral palsy (Balkrishnan et al., "Longitudinal Examination of Health Outcomes Associated with Botulinum Toxin Use in Children with Cerebral Palsy," J. Surg. Orthop. Adv. 13:76-80 (2004); Berweck et al., "Use of Botulinum Toxin in Pediatric Spasticity (Cerebral Palsy)," Mov. Disord. 19:S162-S167 (2004); Pidcock, "The Emerging Role of Therapeutic Botulinum Toxin in the Treatment of Cerebral Palsy," J. Pediatr. 145:S33-S35 (2004), which are hereby incorporated by reference in their entirety), hip adductor muscle dysfunction in multiple sclerosis (Wissel et al., "Botulinum Toxin Treatment of Hip Adductor Spasticity in Multiple Sclerosis," Wien Klin Wochesnchr 4:20-24 (2001), which is hereby incorporated by reference in its entirety), neurogenic pain and inflammation, including arthritis, iatrogenic parotid sialocele (Capaccio et al., "Diagnosis and Therapeutic Management of Iatrogenic Parotid Sialocele," Ann. Otol. Rhinol. Laryngol. 113:562-564 (2004), which is hereby incorporated by reference in its entirety), and chronic TMJ displacement (Aquilina et al., "Reduction of a Chronic Bilateral Temporomandibular Joint Dislocation with Intermaxillary Fixation and Botulinum Toxin A," Br. J. Oral Maxillofac. Surg. 42:272-273 (2004), which is hereby incorporated by reference in its entirety). Other conditions that can be treated by local controlled delivery of pharmaceutically active toxin include intra-articular administration for the treatment of arthritic conditions (Mahowald et al., "Long Term Effects of Intra-Articular BoNT A for Refractory Joint Pain," Annual Meeting of the American College of Rheumatology (2004), which is hereby incorporated by reference in its entirety), and local administration for the treatment of joint contracture (Russman et al., "Cerebral Palsy: A Rational Approach to a Treatment Protocol, and the Role of Botulinum Toxin in Treatment," Muscle Nerve Suppl. 6:S181-S193 (1997); Pucinelli et al., "Botulinic Toxin for the Rehabilitation of Osteoarthritis Fixed-Flexion Knee Deformity," Annual Meeting of the Osteoarthitis Research Society International (2004), which are hereby incorporated by reference in their entirety). The methods of the present invention are also suitable for the treatment of pain associated with various conditions characterized by the sensitization of nociceptors and their associated clinical syndromes, as described in Bach-Rojecky et al., "Antinociceptive Effect of Botulinum Toxin Type A In Rat Model of Carrageenan and Capsaicin Induced Pain," Croat. Med. J. 46:201-208 (2005); Aoki, "Evidence for Antinociceptive Activity of Botulinum Toxin Type A in Pain Management," Headache 43 Suppl 1:S9-15 (2003); Kramer et al., "Botulinum Toxin A Reduces Neurogenic Flare But Has Almost No Effect on Pain and Hyperalgesia in Human Skin," J. Neurol. 250:188-193 (2003); Blersch et al., "Botulinum Toxin A and the Cutaneous Nociception in Humans: A Prospective, Double-Blind, Placebo-Controlled, Randomized Study," J. Neurol. Sci. 205:59-63 (2002), which are hereby incorporated by reference in its entirety.

The methods and products of the present invention may be customized to optimize therapeutic properties (See e.g., Chaddock et al., "Retargeted Clostridial Endopeptidases Inhibition of Nociceptive Neurotransmitter Release In Vitro, and Antinociceptive Activity in In Vivo Models of Pain," Mov. Disord. 8:S42-S47 (2004); Finn, "Botulinum Toxin Type A: Fine-Tuning Treatment of Facial Nerve Injury," J. Drugs Dermatol. 3:133-137 (2004); Eleopra et al., "Different Types of Botulinum Toxin in Humans," Mov. Disord. 8:S53-S59 (2004); Flynn, "Myobloc," Dermatol. Clin. 22:207-211 (2004); and Sampaio et al., "Clinical Comparability of Marketed Formulations of Botulinum Toxin," Mov. Disord. 8:S129-S136 (2004), which are hereby incorporated by reference in their entirety).

 

Claim 1 of 30 Claims

1. An isolated nucleic acid molecule encoding a Clostridial propeptide, wherein the propeptide comprises: a light chain region; a heavy chain region, wherein the light and heavy chain regions are linked by a disulfide bond; an intermediate region connecting the light and heavy chain regions and comprising a highly specific protease cleavage site, wherein said highly specific protease cleavage site has three or more specific adjacent amino acid residues that are recognized by the highly specific protease in order to enable cleavage; a signal peptide coupled to the light chain region, wherein the signal peptide is suitable to permit secretion of the propeptide from a eukaryotic cell to a medium; and an affinity tag located between the signal peptide and the light chain region, wherein the affinity tag has a sequence of SEQ ID NO: 45.
 

____________________________________________
If you want to learn more about this patent, please go directly to the U.S. Patent and Trademark Office Web site to access the full patent.
 

 

     
[ Outsourcing Guide ] [ Cont. Education ] [ Software/Reports ] [ Training Courses ]
[ Web Seminars ] [ Jobs ] [ Consultants ] [ Buyer's Guide ] [ Advertiser Info ]

[ Home ] [ Pharm Patents / Licensing ] [ Pharm News ] [ Federal Register ]
[ Pharm Stocks ] [ FDA Links ] [ FDA Warning Letters ] [ FDA Doc/cGMP ]
[ Pharm/Biotech Events ] [ Newsletter Subscription ] [ Web Links ] [ Suggestions ]
[ Site Map ]